Intrinsic quality factors approaching 10 million in superconducting planar resonators enabled by spiral geometry

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Yusuke Tominaga, Shotaro Shirai, Yuji Hishida, Hirotaka Terai, Atsushi Noguchi
{"title":"Intrinsic quality factors approaching 10 million in superconducting planar resonators enabled by spiral geometry","authors":"Yusuke Tominaga,&nbsp;Shotaro Shirai,&nbsp;Yuji Hishida,&nbsp;Hirotaka Terai,&nbsp;Atsushi Noguchi","doi":"10.1140/epjqt/s40507-025-00367-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the use of spiral geometry in superconducting resonators to achieve high intrinsic quality factors, crucial for applications in quantum computation and quantum sensing. We fabricated Archimedean Spiral Resonators (ASRs) using domain-matched epitaxially grown titanium nitride (TiN) on silicon wafers, achieving intrinsic quality factors of <span>\\(Q_{\\mathrm{i}} = (9.6 \\pm 1.5) \\times 10^{6}\\)</span> at the single-photon level and <span>\\(Q_{\\mathrm{i}} = (9.91 \\pm 0.39) \\times 10^{7}\\)</span> at high power, which is more than twice as high as those for coplanar waveguide (CPW) resonators under identical conditions on the same chip. We conducted a comprehensive numerical analysis using COMSOL to calculate surface participation ratios (PRs) at critical interfaces: metal-air, metal-substrate, and substrate-air. Our findings reveal that ASRs have lower PRs than CPWs, explaining their superior quality factors and reduced coupling to two-level systems (TLSs).</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00367-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00367-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the use of spiral geometry in superconducting resonators to achieve high intrinsic quality factors, crucial for applications in quantum computation and quantum sensing. We fabricated Archimedean Spiral Resonators (ASRs) using domain-matched epitaxially grown titanium nitride (TiN) on silicon wafers, achieving intrinsic quality factors of \(Q_{\mathrm{i}} = (9.6 \pm 1.5) \times 10^{6}\) at the single-photon level and \(Q_{\mathrm{i}} = (9.91 \pm 0.39) \times 10^{7}\) at high power, which is more than twice as high as those for coplanar waveguide (CPW) resonators under identical conditions on the same chip. We conducted a comprehensive numerical analysis using COMSOL to calculate surface participation ratios (PRs) at critical interfaces: metal-air, metal-substrate, and substrate-air. Our findings reveal that ASRs have lower PRs than CPWs, explaining their superior quality factors and reduced coupling to two-level systems (TLSs).

螺旋几何实现的超导平面谐振器的内在质量因子接近1000万
本研究探讨了在超导谐振器中使用螺旋几何来实现高内在质量因子,这对量子计算和量子传感的应用至关重要。我们在硅片上采用域匹配外延生长氮化钛(TiN)制备了阿基米德螺旋谐振器(ASRs),在单光子水平上实现了\(Q_{\mathrm{i}} = (9.6 \pm 1.5) \times 10^{6}\)的内在质量因子,在高功率下实现了\(Q_{\mathrm{i}} = (9.91 \pm 0.39) \times 10^{7}\)的内在质量因子,这是在相同条件下在同一芯片上共面波导(CPW)谐振器的两倍以上。我们使用COMSOL进行了全面的数值分析,计算了金属-空气、金属-基质和基质-空气等关键界面的表面参与比(pr)。我们的研究结果表明,asr比cpw具有更低的pr,这解释了asr具有更高的质量因子,并且与两级系统(tls)的耦合程度更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信