{"title":"Intrinsic quality factors approaching 10 million in superconducting planar resonators enabled by spiral geometry","authors":"Yusuke Tominaga, Shotaro Shirai, Yuji Hishida, Hirotaka Terai, Atsushi Noguchi","doi":"10.1140/epjqt/s40507-025-00367-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the use of spiral geometry in superconducting resonators to achieve high intrinsic quality factors, crucial for applications in quantum computation and quantum sensing. We fabricated Archimedean Spiral Resonators (ASRs) using domain-matched epitaxially grown titanium nitride (TiN) on silicon wafers, achieving intrinsic quality factors of <span>\\(Q_{\\mathrm{i}} = (9.6 \\pm 1.5) \\times 10^{6}\\)</span> at the single-photon level and <span>\\(Q_{\\mathrm{i}} = (9.91 \\pm 0.39) \\times 10^{7}\\)</span> at high power, which is more than twice as high as those for coplanar waveguide (CPW) resonators under identical conditions on the same chip. We conducted a comprehensive numerical analysis using COMSOL to calculate surface participation ratios (PRs) at critical interfaces: metal-air, metal-substrate, and substrate-air. Our findings reveal that ASRs have lower PRs than CPWs, explaining their superior quality factors and reduced coupling to two-level systems (TLSs).</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00367-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00367-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the use of spiral geometry in superconducting resonators to achieve high intrinsic quality factors, crucial for applications in quantum computation and quantum sensing. We fabricated Archimedean Spiral Resonators (ASRs) using domain-matched epitaxially grown titanium nitride (TiN) on silicon wafers, achieving intrinsic quality factors of \(Q_{\mathrm{i}} = (9.6 \pm 1.5) \times 10^{6}\) at the single-photon level and \(Q_{\mathrm{i}} = (9.91 \pm 0.39) \times 10^{7}\) at high power, which is more than twice as high as those for coplanar waveguide (CPW) resonators under identical conditions on the same chip. We conducted a comprehensive numerical analysis using COMSOL to calculate surface participation ratios (PRs) at critical interfaces: metal-air, metal-substrate, and substrate-air. Our findings reveal that ASRs have lower PRs than CPWs, explaining their superior quality factors and reduced coupling to two-level systems (TLSs).
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.