Quantum algorithm compiler for architectures with semiconductor spin qubits

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Masahiro Tadokoro, Ryutaro Matsuoka, Tetsuo Kodera
{"title":"Quantum algorithm compiler for architectures with semiconductor spin qubits","authors":"Masahiro Tadokoro,&nbsp;Ryutaro Matsuoka,&nbsp;Tetsuo Kodera","doi":"10.1140/epjqt/s40507-025-00384-9","DOIUrl":null,"url":null,"abstract":"<div><p>Various architectures have been proposed using a large array of semiconductor spin qubits with high-fidelity and high-speed gate operation. However, no quantum algorithm compilers have been developed which can compile quantum algorithms in a consistent manner for the various architectures, limiting the discussion on evaluating the efficiency of quantum algorithm implementation. Here, we propose Qubit Operation Orchestrator considering qubit Connectivity and Addressability Implementation (QOOCAI), a first quantum algorithm compiler designed for various architectures with semiconductor spin qubits. QOOCAI can compile quantum algorithms to various architectures with different qubit connectivity and addressability, which are important features that affect the efficiency of quantum algorithm implementation. Furthermore, we compile multiple quantum algorithms on different architectures with QOOCAI, showing that higher qubit connectivity and addressability make the algorithm implementation quantitatively more efficient. These findings are crucial for developing semiconductor spin qubit devices, highlighting QOOCAI’s potential for improving quantum algorithm implementation efficiency across diverse architectures.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00384-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00384-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Various architectures have been proposed using a large array of semiconductor spin qubits with high-fidelity and high-speed gate operation. However, no quantum algorithm compilers have been developed which can compile quantum algorithms in a consistent manner for the various architectures, limiting the discussion on evaluating the efficiency of quantum algorithm implementation. Here, we propose Qubit Operation Orchestrator considering qubit Connectivity and Addressability Implementation (QOOCAI), a first quantum algorithm compiler designed for various architectures with semiconductor spin qubits. QOOCAI can compile quantum algorithms to various architectures with different qubit connectivity and addressability, which are important features that affect the efficiency of quantum algorithm implementation. Furthermore, we compile multiple quantum algorithms on different architectures with QOOCAI, showing that higher qubit connectivity and addressability make the algorithm implementation quantitatively more efficient. These findings are crucial for developing semiconductor spin qubit devices, highlighting QOOCAI’s potential for improving quantum algorithm implementation efficiency across diverse architectures.

半导体自旋量子比特体系结构的量子算法编译器
使用大量具有高保真度和高速门操作的半导体自旋量子位元阵列提出了各种架构。然而,目前还没有开发出能够在各种体系结构中以一致的方式编译量子算法的量子算法编译器,这限制了对评估量子算法实现效率的讨论。在这里,我们提出了考虑量子比特连通性和可寻址性实现的量子比特操作编排器(QOOCAI),这是第一个为具有半导体自旋量子比特的各种架构设计的量子算法编译器。QOOCAI可以将量子算法编译成具有不同量子比特连通性和可寻址性的各种架构,这是影响量子算法实现效率的重要特征。此外,我们使用QOOCAI在不同架构上编译了多个量子算法,表明更高的量子比特连通性和可寻址性使算法的实现在定量上更加高效。这些发现对于开发半导体自旋量子比特器件至关重要,突出了QOOCAI在提高不同架构的量子算法实现效率方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信