{"title":"统一混合量子经典神经网络框架检测分布式拒绝服务和Android移动恶意软件攻击","authors":"Sridevi S, Indira B, Geetha S, Balachandran S, Gorkem Kar, Shangirne Kharbanda","doi":"10.1140/epjqt/s40507-025-00380-z","DOIUrl":null,"url":null,"abstract":"<div><p>The rise of advanced networking and mobile technologies has improved flexibility in Software Defined Networking (SDN) management and mobile ecosystems but it has also introduced vulnerabilities like Distributed Denial of Service (DDoS) attacks and Android malware. In this research, we propose a Hybrid Quantum Classical Neural Network (HQCNN) framework that operates with a Dressed Quantum Circuit (DQC) to achieve efficient detection and classification of threats. The input pipeline of the HQCNN integrates Wavelet Transforms based feature pre-processing, Convolutional Neural Network based feature extraction, Linear Discriminant Analysis (LDA) for dimensionality reduction, and quantum layers for enhanced classification with less computational complexity. Experiments were conducted on the SDN DDoS Attack Dataset and the CCCS-CIC-AndMal2020 Static Dataset. Two different model variants were devised for binary and multiclass classification problems addressing various cybersecurity issues. The binary HQCNN model for SDN-based DDoS detection was implemented on AWS Braket’s real Quantum Processing Unit (QPU), achieving 99.86% accuracy, 99.85% precision, 100% recall, and a 99.88% F1-score, thereby outperforming the classical Convolutional Neural Network (CNN). The multiclass HQCNN, on the other hand, attains accuracy of 93.56%, 94.38%, and 95.13% on the 15-class, 14-class, and 12-class versions of CCCS-CIC-AndMal2020 Static, respectively, hence outperforms all existing methods. These results show that HQCNN is efficient, scalable, and very much applicable in cybersecurity, validating its real-world use effectiveness applicability in threat detection.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00380-z","citationCount":"0","resultStr":"{\"title\":\"Unified hybrid quantum classical neural network framework for detecting distributed denial of service and Android mobile malware attacks\",\"authors\":\"Sridevi S, Indira B, Geetha S, Balachandran S, Gorkem Kar, Shangirne Kharbanda\",\"doi\":\"10.1140/epjqt/s40507-025-00380-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rise of advanced networking and mobile technologies has improved flexibility in Software Defined Networking (SDN) management and mobile ecosystems but it has also introduced vulnerabilities like Distributed Denial of Service (DDoS) attacks and Android malware. In this research, we propose a Hybrid Quantum Classical Neural Network (HQCNN) framework that operates with a Dressed Quantum Circuit (DQC) to achieve efficient detection and classification of threats. The input pipeline of the HQCNN integrates Wavelet Transforms based feature pre-processing, Convolutional Neural Network based feature extraction, Linear Discriminant Analysis (LDA) for dimensionality reduction, and quantum layers for enhanced classification with less computational complexity. Experiments were conducted on the SDN DDoS Attack Dataset and the CCCS-CIC-AndMal2020 Static Dataset. Two different model variants were devised for binary and multiclass classification problems addressing various cybersecurity issues. The binary HQCNN model for SDN-based DDoS detection was implemented on AWS Braket’s real Quantum Processing Unit (QPU), achieving 99.86% accuracy, 99.85% precision, 100% recall, and a 99.88% F1-score, thereby outperforming the classical Convolutional Neural Network (CNN). The multiclass HQCNN, on the other hand, attains accuracy of 93.56%, 94.38%, and 95.13% on the 15-class, 14-class, and 12-class versions of CCCS-CIC-AndMal2020 Static, respectively, hence outperforms all existing methods. These results show that HQCNN is efficient, scalable, and very much applicable in cybersecurity, validating its real-world use effectiveness applicability in threat detection.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00380-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00380-z\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00380-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Unified hybrid quantum classical neural network framework for detecting distributed denial of service and Android mobile malware attacks
The rise of advanced networking and mobile technologies has improved flexibility in Software Defined Networking (SDN) management and mobile ecosystems but it has also introduced vulnerabilities like Distributed Denial of Service (DDoS) attacks and Android malware. In this research, we propose a Hybrid Quantum Classical Neural Network (HQCNN) framework that operates with a Dressed Quantum Circuit (DQC) to achieve efficient detection and classification of threats. The input pipeline of the HQCNN integrates Wavelet Transforms based feature pre-processing, Convolutional Neural Network based feature extraction, Linear Discriminant Analysis (LDA) for dimensionality reduction, and quantum layers for enhanced classification with less computational complexity. Experiments were conducted on the SDN DDoS Attack Dataset and the CCCS-CIC-AndMal2020 Static Dataset. Two different model variants were devised for binary and multiclass classification problems addressing various cybersecurity issues. The binary HQCNN model for SDN-based DDoS detection was implemented on AWS Braket’s real Quantum Processing Unit (QPU), achieving 99.86% accuracy, 99.85% precision, 100% recall, and a 99.88% F1-score, thereby outperforming the classical Convolutional Neural Network (CNN). The multiclass HQCNN, on the other hand, attains accuracy of 93.56%, 94.38%, and 95.13% on the 15-class, 14-class, and 12-class versions of CCCS-CIC-AndMal2020 Static, respectively, hence outperforms all existing methods. These results show that HQCNN is efficient, scalable, and very much applicable in cybersecurity, validating its real-world use effectiveness applicability in threat detection.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.