基于WGAN-GP的自动噪声抑制机制量子生成对抗网络

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Yanbing Tian, Cewen Tian, Zaixu Fan, Minghao Fu, Hongyang Ma
{"title":"基于WGAN-GP的自动噪声抑制机制量子生成对抗网络","authors":"Yanbing Tian,&nbsp;Cewen Tian,&nbsp;Zaixu Fan,&nbsp;Minghao Fu,&nbsp;Hongyang Ma","doi":"10.1140/epjqt/s40507-025-00372-z","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum Machine Learning (QML) has attracted significant attention for its potential to deliver exponential advantages over classical machine learning approaches, particularly in classification and recognition tasks. Quantum Generative Adversarial Networks (QGANs), a form of quantum machine learning, provide promising advantages in image processing and generation tasks when compared to classical technologies. However, the limitations of current quantum devices have led to suboptimal image quality and limited robustness in earlier methods. To overcome these challenges, we developed a hybrid quantum-classical approach, introducing CAQ, a quantum-classical Generative Adversarial Network (GAN) framework. Leveraging the latest WGAN-gradient penalty (GP) strategy, we trained and optimized the quantum generator, reduced the complexity of parameters, and implemented an adaptive noise input system that dynamically adjusts noise levels, thereby improving the model’s robustness. Additionally, we employed a remapping technique to transform the original image’s multimodal distribution into a unimodal one, thereby reducing the complexity of the learned distribution. Experiments on MNIST and Fashion-MNIST datasets show that CAQ generates grayscale images effectively, demonstrating its feasibility on near-term intermediate-scale quantum (NISQ) computers.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00372-z","citationCount":"0","resultStr":"{\"title\":\"Quantum generative adversarial network with automated noise suppression mechanism based on WGAN-GP\",\"authors\":\"Yanbing Tian,&nbsp;Cewen Tian,&nbsp;Zaixu Fan,&nbsp;Minghao Fu,&nbsp;Hongyang Ma\",\"doi\":\"10.1140/epjqt/s40507-025-00372-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum Machine Learning (QML) has attracted significant attention for its potential to deliver exponential advantages over classical machine learning approaches, particularly in classification and recognition tasks. Quantum Generative Adversarial Networks (QGANs), a form of quantum machine learning, provide promising advantages in image processing and generation tasks when compared to classical technologies. However, the limitations of current quantum devices have led to suboptimal image quality and limited robustness in earlier methods. To overcome these challenges, we developed a hybrid quantum-classical approach, introducing CAQ, a quantum-classical Generative Adversarial Network (GAN) framework. Leveraging the latest WGAN-gradient penalty (GP) strategy, we trained and optimized the quantum generator, reduced the complexity of parameters, and implemented an adaptive noise input system that dynamically adjusts noise levels, thereby improving the model’s robustness. Additionally, we employed a remapping technique to transform the original image’s multimodal distribution into a unimodal one, thereby reducing the complexity of the learned distribution. Experiments on MNIST and Fashion-MNIST datasets show that CAQ generates grayscale images effectively, demonstrating its feasibility on near-term intermediate-scale quantum (NISQ) computers.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00372-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00372-z\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00372-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

量子机器学习(QML)因其与经典机器学习方法相比具有指数级优势的潜力而引起了广泛关注,特别是在分类和识别任务方面。量子生成对抗网络(qgan)是量子机器学习的一种形式,与经典技术相比,在图像处理和生成任务方面提供了有希望的优势。然而,当前量子器件的局限性导致了较早方法中图像质量欠佳和鲁棒性有限。为了克服这些挑战,我们开发了一种混合量子经典方法,引入了CAQ,一种量子经典生成对抗网络(GAN)框架。利用最新的wgan梯度惩罚(GP)策略,我们训练和优化了量子生成器,降低了参数的复杂性,并实现了一个动态调整噪声水平的自适应噪声输入系统,从而提高了模型的鲁棒性。此外,我们采用了一种重新映射技术,将原始图像的多模态分布转换为单模态分布,从而降低了学习分布的复杂性。在MNIST和Fashion-MNIST数据集上的实验表明,CAQ能有效地生成灰度图像,证明了其在近期中尺度量子计算机(NISQ)上的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum generative adversarial network with automated noise suppression mechanism based on WGAN-GP

Quantum Machine Learning (QML) has attracted significant attention for its potential to deliver exponential advantages over classical machine learning approaches, particularly in classification and recognition tasks. Quantum Generative Adversarial Networks (QGANs), a form of quantum machine learning, provide promising advantages in image processing and generation tasks when compared to classical technologies. However, the limitations of current quantum devices have led to suboptimal image quality and limited robustness in earlier methods. To overcome these challenges, we developed a hybrid quantum-classical approach, introducing CAQ, a quantum-classical Generative Adversarial Network (GAN) framework. Leveraging the latest WGAN-gradient penalty (GP) strategy, we trained and optimized the quantum generator, reduced the complexity of parameters, and implemented an adaptive noise input system that dynamically adjusts noise levels, thereby improving the model’s robustness. Additionally, we employed a remapping technique to transform the original image’s multimodal distribution into a unimodal one, thereby reducing the complexity of the learned distribution. Experiments on MNIST and Fashion-MNIST datasets show that CAQ generates grayscale images effectively, demonstrating its feasibility on near-term intermediate-scale quantum (NISQ) computers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信