Yanbing Tian, Cewen Tian, Zaixu Fan, Minghao Fu, Hongyang Ma
{"title":"基于WGAN-GP的自动噪声抑制机制量子生成对抗网络","authors":"Yanbing Tian, Cewen Tian, Zaixu Fan, Minghao Fu, Hongyang Ma","doi":"10.1140/epjqt/s40507-025-00372-z","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum Machine Learning (QML) has attracted significant attention for its potential to deliver exponential advantages over classical machine learning approaches, particularly in classification and recognition tasks. Quantum Generative Adversarial Networks (QGANs), a form of quantum machine learning, provide promising advantages in image processing and generation tasks when compared to classical technologies. However, the limitations of current quantum devices have led to suboptimal image quality and limited robustness in earlier methods. To overcome these challenges, we developed a hybrid quantum-classical approach, introducing CAQ, a quantum-classical Generative Adversarial Network (GAN) framework. Leveraging the latest WGAN-gradient penalty (GP) strategy, we trained and optimized the quantum generator, reduced the complexity of parameters, and implemented an adaptive noise input system that dynamically adjusts noise levels, thereby improving the model’s robustness. Additionally, we employed a remapping technique to transform the original image’s multimodal distribution into a unimodal one, thereby reducing the complexity of the learned distribution. Experiments on MNIST and Fashion-MNIST datasets show that CAQ generates grayscale images effectively, demonstrating its feasibility on near-term intermediate-scale quantum (NISQ) computers.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00372-z","citationCount":"0","resultStr":"{\"title\":\"Quantum generative adversarial network with automated noise suppression mechanism based on WGAN-GP\",\"authors\":\"Yanbing Tian, Cewen Tian, Zaixu Fan, Minghao Fu, Hongyang Ma\",\"doi\":\"10.1140/epjqt/s40507-025-00372-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum Machine Learning (QML) has attracted significant attention for its potential to deliver exponential advantages over classical machine learning approaches, particularly in classification and recognition tasks. Quantum Generative Adversarial Networks (QGANs), a form of quantum machine learning, provide promising advantages in image processing and generation tasks when compared to classical technologies. However, the limitations of current quantum devices have led to suboptimal image quality and limited robustness in earlier methods. To overcome these challenges, we developed a hybrid quantum-classical approach, introducing CAQ, a quantum-classical Generative Adversarial Network (GAN) framework. Leveraging the latest WGAN-gradient penalty (GP) strategy, we trained and optimized the quantum generator, reduced the complexity of parameters, and implemented an adaptive noise input system that dynamically adjusts noise levels, thereby improving the model’s robustness. Additionally, we employed a remapping technique to transform the original image’s multimodal distribution into a unimodal one, thereby reducing the complexity of the learned distribution. Experiments on MNIST and Fashion-MNIST datasets show that CAQ generates grayscale images effectively, demonstrating its feasibility on near-term intermediate-scale quantum (NISQ) computers.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00372-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00372-z\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00372-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Quantum generative adversarial network with automated noise suppression mechanism based on WGAN-GP
Quantum Machine Learning (QML) has attracted significant attention for its potential to deliver exponential advantages over classical machine learning approaches, particularly in classification and recognition tasks. Quantum Generative Adversarial Networks (QGANs), a form of quantum machine learning, provide promising advantages in image processing and generation tasks when compared to classical technologies. However, the limitations of current quantum devices have led to suboptimal image quality and limited robustness in earlier methods. To overcome these challenges, we developed a hybrid quantum-classical approach, introducing CAQ, a quantum-classical Generative Adversarial Network (GAN) framework. Leveraging the latest WGAN-gradient penalty (GP) strategy, we trained and optimized the quantum generator, reduced the complexity of parameters, and implemented an adaptive noise input system that dynamically adjusts noise levels, thereby improving the model’s robustness. Additionally, we employed a remapping technique to transform the original image’s multimodal distribution into a unimodal one, thereby reducing the complexity of the learned distribution. Experiments on MNIST and Fashion-MNIST datasets show that CAQ generates grayscale images effectively, demonstrating its feasibility on near-term intermediate-scale quantum (NISQ) computers.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.