{"title":"半导体自旋量子比特体系结构的量子算法编译器","authors":"Masahiro Tadokoro, Ryutaro Matsuoka, Tetsuo Kodera","doi":"10.1140/epjqt/s40507-025-00384-9","DOIUrl":null,"url":null,"abstract":"<div><p>Various architectures have been proposed using a large array of semiconductor spin qubits with high-fidelity and high-speed gate operation. However, no quantum algorithm compilers have been developed which can compile quantum algorithms in a consistent manner for the various architectures, limiting the discussion on evaluating the efficiency of quantum algorithm implementation. Here, we propose Qubit Operation Orchestrator considering qubit Connectivity and Addressability Implementation (QOOCAI), a first quantum algorithm compiler designed for various architectures with semiconductor spin qubits. QOOCAI can compile quantum algorithms to various architectures with different qubit connectivity and addressability, which are important features that affect the efficiency of quantum algorithm implementation. Furthermore, we compile multiple quantum algorithms on different architectures with QOOCAI, showing that higher qubit connectivity and addressability make the algorithm implementation quantitatively more efficient. These findings are crucial for developing semiconductor spin qubit devices, highlighting QOOCAI’s potential for improving quantum algorithm implementation efficiency across diverse architectures.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00384-9","citationCount":"0","resultStr":"{\"title\":\"Quantum algorithm compiler for architectures with semiconductor spin qubits\",\"authors\":\"Masahiro Tadokoro, Ryutaro Matsuoka, Tetsuo Kodera\",\"doi\":\"10.1140/epjqt/s40507-025-00384-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Various architectures have been proposed using a large array of semiconductor spin qubits with high-fidelity and high-speed gate operation. However, no quantum algorithm compilers have been developed which can compile quantum algorithms in a consistent manner for the various architectures, limiting the discussion on evaluating the efficiency of quantum algorithm implementation. Here, we propose Qubit Operation Orchestrator considering qubit Connectivity and Addressability Implementation (QOOCAI), a first quantum algorithm compiler designed for various architectures with semiconductor spin qubits. QOOCAI can compile quantum algorithms to various architectures with different qubit connectivity and addressability, which are important features that affect the efficiency of quantum algorithm implementation. Furthermore, we compile multiple quantum algorithms on different architectures with QOOCAI, showing that higher qubit connectivity and addressability make the algorithm implementation quantitatively more efficient. These findings are crucial for developing semiconductor spin qubit devices, highlighting QOOCAI’s potential for improving quantum algorithm implementation efficiency across diverse architectures.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00384-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00384-9\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00384-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Quantum algorithm compiler for architectures with semiconductor spin qubits
Various architectures have been proposed using a large array of semiconductor spin qubits with high-fidelity and high-speed gate operation. However, no quantum algorithm compilers have been developed which can compile quantum algorithms in a consistent manner for the various architectures, limiting the discussion on evaluating the efficiency of quantum algorithm implementation. Here, we propose Qubit Operation Orchestrator considering qubit Connectivity and Addressability Implementation (QOOCAI), a first quantum algorithm compiler designed for various architectures with semiconductor spin qubits. QOOCAI can compile quantum algorithms to various architectures with different qubit connectivity and addressability, which are important features that affect the efficiency of quantum algorithm implementation. Furthermore, we compile multiple quantum algorithms on different architectures with QOOCAI, showing that higher qubit connectivity and addressability make the algorithm implementation quantitatively more efficient. These findings are crucial for developing semiconductor spin qubit devices, highlighting QOOCAI’s potential for improving quantum algorithm implementation efficiency across diverse architectures.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.