Towards satellite tests combining general relativity and quantum mechanics through quantum optical interferometry: progress on the deep space quantum link
Makan Mohageg, Charis Anastopoulos, Olivia Brasher, Jason Gallicchio, Bei Lok Hu, Thomas Jennewein, Spencer Johnson, Shih-Yuin Lin, Alexander Ling, Alexander Lohrmann, Christoph Marquardt, Luca Mazzarella, Matthias Meister, Raymond Newell, Albert Roura, Giuseppe Vallone, Paolo Villoresi, Lisa Wörner, Paul Kwiat
{"title":"Towards satellite tests combining general relativity and quantum mechanics through quantum optical interferometry: progress on the deep space quantum link","authors":"Makan Mohageg, Charis Anastopoulos, Olivia Brasher, Jason Gallicchio, Bei Lok Hu, Thomas Jennewein, Spencer Johnson, Shih-Yuin Lin, Alexander Ling, Alexander Lohrmann, Christoph Marquardt, Luca Mazzarella, Matthias Meister, Raymond Newell, Albert Roura, Giuseppe Vallone, Paolo Villoresi, Lisa Wörner, Paul Kwiat","doi":"10.1140/epjqt/s40507-025-00370-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Deep Space Quantum Link (DSQL) is a space-mission concept that aims to explore the interplay between general relativity and quantum mechanics using quantum optical interferometry. This mission concept was formally presented to the United States National Academy of Science Decadal Survey as a research campaign for Fundamental Physics in 2022. Since then, advances have been made in the space-based quantum optical technologies required to conduct a DSQL-type mission. In addition, other research efforts have defined alternative measurement concepts to explore the same scientific questions motivating the DSQL mission. This paper serves as an update to the community on the status of the DSQL mission concept and related research and technology development efforts.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00370-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00370-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Deep Space Quantum Link (DSQL) is a space-mission concept that aims to explore the interplay between general relativity and quantum mechanics using quantum optical interferometry. This mission concept was formally presented to the United States National Academy of Science Decadal Survey as a research campaign for Fundamental Physics in 2022. Since then, advances have been made in the space-based quantum optical technologies required to conduct a DSQL-type mission. In addition, other research efforts have defined alternative measurement concepts to explore the same scientific questions motivating the DSQL mission. This paper serves as an update to the community on the status of the DSQL mission concept and related research and technology development efforts.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.