qgan增强的基于变压器的量子错误解码:面向可扩展表面码校正算法

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Cewen Tian, Zaixu Fan, Xiaoxuan Guo, Xinying Song, Yanbing Tian
{"title":"qgan增强的基于变压器的量子错误解码:面向可扩展表面码校正算法","authors":"Cewen Tian,&nbsp;Zaixu Fan,&nbsp;Xiaoxuan Guo,&nbsp;Xinying Song,&nbsp;Yanbing Tian","doi":"10.1140/epjqt/s40507-025-00383-w","DOIUrl":null,"url":null,"abstract":"<div><p>To address qubits’ high environmental sensitivity and reduce the significant error rates in current quantum devices, quantum error correction stands as one of the most dependable approaches. The topological surface code, renowned for its unique qubit lattice structure, is widely considered a pivotal tool for enabling fault-tolerant quantum computation. Through redundancy introduced across multiple qubits, the surface code safeguards quantum information and identifies errors via state changes captured by syndrome qubits. However, simultaneous errors in data and syndrome qubits substantially escalate decoding complexity. Quantum Generative Adversarial Networks (QGANs) have emerged as promising deep learning frameworks, effectively harnessing quantum advantages for practical tasks such as image processing and data optimization. Consequently, a topological code trainer for quantum-classical hybrid GANs is proposed as an auxiliary model to enhance error correction in machine learning-based decoders, demonstrating significantly improved training accuracy compared to the traditional Minimum Weight Perfect Matching (MWPM) algorithm, which achieves an accuracy of 65%. Numerical experiments reveal that the decoder achieves a fidelity threshold of P = 0.1978, substantially surpassing the traditional algorithm’s threshold of P = 0.1024. To enhance decoding efficiency, a Transformer decoder is integrated, incorporating syndrome error outputs trained via QGANs into its framework. By leveraging its self-attention mechanism, the Transformer effectively captures long-range qubit dependencies at a global scale, enabling high-fidelity error correction over larger dimensions. Numerical validation of the surface code error threshold demonstrates an 8.5% threshold with a correction success rate exceeding 94%, whereas the local MWPM decoder achieves only 55% and fails to support large-scale computation at a 4% threshold.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00383-w","citationCount":"0","resultStr":"{\"title\":\"Transformer-based quantum error decoding enhanced by QGANs: towards scalable surface code correction algorithms\",\"authors\":\"Cewen Tian,&nbsp;Zaixu Fan,&nbsp;Xiaoxuan Guo,&nbsp;Xinying Song,&nbsp;Yanbing Tian\",\"doi\":\"10.1140/epjqt/s40507-025-00383-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To address qubits’ high environmental sensitivity and reduce the significant error rates in current quantum devices, quantum error correction stands as one of the most dependable approaches. The topological surface code, renowned for its unique qubit lattice structure, is widely considered a pivotal tool for enabling fault-tolerant quantum computation. Through redundancy introduced across multiple qubits, the surface code safeguards quantum information and identifies errors via state changes captured by syndrome qubits. However, simultaneous errors in data and syndrome qubits substantially escalate decoding complexity. Quantum Generative Adversarial Networks (QGANs) have emerged as promising deep learning frameworks, effectively harnessing quantum advantages for practical tasks such as image processing and data optimization. Consequently, a topological code trainer for quantum-classical hybrid GANs is proposed as an auxiliary model to enhance error correction in machine learning-based decoders, demonstrating significantly improved training accuracy compared to the traditional Minimum Weight Perfect Matching (MWPM) algorithm, which achieves an accuracy of 65%. Numerical experiments reveal that the decoder achieves a fidelity threshold of P = 0.1978, substantially surpassing the traditional algorithm’s threshold of P = 0.1024. To enhance decoding efficiency, a Transformer decoder is integrated, incorporating syndrome error outputs trained via QGANs into its framework. By leveraging its self-attention mechanism, the Transformer effectively captures long-range qubit dependencies at a global scale, enabling high-fidelity error correction over larger dimensions. Numerical validation of the surface code error threshold demonstrates an 8.5% threshold with a correction success rate exceeding 94%, whereas the local MWPM decoder achieves only 55% and fails to support large-scale computation at a 4% threshold.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00383-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00383-w\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00383-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

为了解决量子比特的高环境敏感性和降低当前量子器件的显着错误率,量子纠错是最可靠的方法之一。拓扑表面码以其独特的量子比特晶格结构而闻名,被广泛认为是实现容错量子计算的关键工具。通过在多个量子比特之间引入冗余,表面代码保护量子信息,并通过综合征量子比特捕获的状态变化识别错误。然而,数据和综合征量子比特的同步错误大大增加了解码的复杂性。量子生成对抗网络(qgan)已经成为有前途的深度学习框架,有效地利用量子优势进行图像处理和数据优化等实际任务。因此,提出了一种量子-经典混合gan的拓扑码训练器作为辅助模型,以增强基于机器学习的解码器的纠错能力,与传统的最小权值完美匹配(MWPM)算法相比,训练精度显著提高,达到65%的精度。数值实验表明,该解码器达到了P = 0.1978的保真度阈值,大大超过了传统算法的P = 0.1024的阈值。为了提高解码效率,集成了Transformer解码器,将通过qgan训练的综合征误差输出集成到其框架中。通过利用其自关注机制,Transformer可以在全局范围内有效地捕获远程量子位依赖关系,从而在更大的维度上实现高保真的错误纠正。表面码错误阈值的数值验证表明,该阈值为8.5%,校正成功率超过94%,而局部MWPM解码器的校正成功率仅为55%,并且在4%的阈值下无法支持大规模计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer-based quantum error decoding enhanced by QGANs: towards scalable surface code correction algorithms

To address qubits’ high environmental sensitivity and reduce the significant error rates in current quantum devices, quantum error correction stands as one of the most dependable approaches. The topological surface code, renowned for its unique qubit lattice structure, is widely considered a pivotal tool for enabling fault-tolerant quantum computation. Through redundancy introduced across multiple qubits, the surface code safeguards quantum information and identifies errors via state changes captured by syndrome qubits. However, simultaneous errors in data and syndrome qubits substantially escalate decoding complexity. Quantum Generative Adversarial Networks (QGANs) have emerged as promising deep learning frameworks, effectively harnessing quantum advantages for practical tasks such as image processing and data optimization. Consequently, a topological code trainer for quantum-classical hybrid GANs is proposed as an auxiliary model to enhance error correction in machine learning-based decoders, demonstrating significantly improved training accuracy compared to the traditional Minimum Weight Perfect Matching (MWPM) algorithm, which achieves an accuracy of 65%. Numerical experiments reveal that the decoder achieves a fidelity threshold of P = 0.1978, substantially surpassing the traditional algorithm’s threshold of P = 0.1024. To enhance decoding efficiency, a Transformer decoder is integrated, incorporating syndrome error outputs trained via QGANs into its framework. By leveraging its self-attention mechanism, the Transformer effectively captures long-range qubit dependencies at a global scale, enabling high-fidelity error correction over larger dimensions. Numerical validation of the surface code error threshold demonstrates an 8.5% threshold with a correction success rate exceeding 94%, whereas the local MWPM decoder achieves only 55% and fails to support large-scale computation at a 4% threshold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信