Hyein Cho, Jeonghoon Kim, Kyoung Tai No, Hocheol Lim
{"title":"Hybrid quantum neural networks with variational quantum regressor for enhancing QSPR modeling of CO2-capturing amine","authors":"Hyein Cho, Jeonghoon Kim, Kyoung Tai No, Hocheol Lim","doi":"10.1140/epjqt/s40507-025-00385-8","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate amine property prediction is essential for optimizing CO<sub>2</sub> capture efficiency in post-combustion processes. Quantum machine learning (QML) can enhance predictive modeling by leveraging superposition, entanglement, and interference to capture complex correlations. In this study, we developed hybrid quantum neural networks (HQNN) to improve quantitative structure-property relationship (QSPR) modeling for CO<sub>2</sub>-capturing amines. By integrating variational quantum regressors with classical multi-layer perceptrons and graph neural networks, quantum-enhanced performance was explored in physicochemical property prediction under noiseless conditions and robustness was evaluated against quantum hardware noise using IBM quantum systems. Our results showed that HQNNs improve predictive accuracy for key solvent properties, including basicity, viscosity, boiling point, melting point, and vapor pressure. The fine-tuned and frozen pre-trained HQNN models with 9 qubits consistently achieved the highest rankings, highlighting the benefits of integrating quantum layers with pre-trained classical models. Furthermore, simulations under hardware noise confirmed the robustness of HQNNs, maintaining predictive performance. Overall, these findings emphasize the potential of hybrid quantum-classical architectures in molecular modeling. As quantum hardware and QML algorithms continue to advance, practical quantum benefits in QSPR modeling and materials discovery are expected to become increasingly attainable, driven by improvements in quantum circuit design, noise mitigation, and scalable architectures.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00385-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00385-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate amine property prediction is essential for optimizing CO2 capture efficiency in post-combustion processes. Quantum machine learning (QML) can enhance predictive modeling by leveraging superposition, entanglement, and interference to capture complex correlations. In this study, we developed hybrid quantum neural networks (HQNN) to improve quantitative structure-property relationship (QSPR) modeling for CO2-capturing amines. By integrating variational quantum regressors with classical multi-layer perceptrons and graph neural networks, quantum-enhanced performance was explored in physicochemical property prediction under noiseless conditions and robustness was evaluated against quantum hardware noise using IBM quantum systems. Our results showed that HQNNs improve predictive accuracy for key solvent properties, including basicity, viscosity, boiling point, melting point, and vapor pressure. The fine-tuned and frozen pre-trained HQNN models with 9 qubits consistently achieved the highest rankings, highlighting the benefits of integrating quantum layers with pre-trained classical models. Furthermore, simulations under hardware noise confirmed the robustness of HQNNs, maintaining predictive performance. Overall, these findings emphasize the potential of hybrid quantum-classical architectures in molecular modeling. As quantum hardware and QML algorithms continue to advance, practical quantum benefits in QSPR modeling and materials discovery are expected to become increasingly attainable, driven by improvements in quantum circuit design, noise mitigation, and scalable architectures.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.