Journal de Mathematiques Pures et Appliquees最新文献

筛选
英文 中文
Harmonic analysis in Dunkl settings Dunkl设置中的谐波分析
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-04-28 DOI: 10.1016/j.matpur.2025.103725
The Anh Bui
{"title":"Harmonic analysis in Dunkl settings","authors":"The Anh Bui","doi":"10.1016/j.matpur.2025.103725","DOIUrl":"10.1016/j.matpur.2025.103725","url":null,"abstract":"<div><div>Let <em>L</em> be the Dunkl Laplacian on the Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> associated with a normalized root <em>R</em> and a multiplicity function <span><math><mi>k</mi><mo>(</mo><mi>ν</mi><mo>)</mo><mo>≥</mo><mn>0</mn><mo>,</mo><mi>ν</mi><mo>∈</mo><mi>R</mi></math></span>. In this paper, we first prove that the Besov and Triebel-Lizorkin spaces associated with the Dunkl Laplacian <em>L</em> are identical to the Besov and Triebel-Lizorkin spaces defined in the space of homogeneous type <span><math><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>,</mo><mi>d</mi><mi>w</mi><mo>)</mo></math></span>, where <span><math><mi>d</mi><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>ν</mi><mo>∈</mo><mi>R</mi></mrow></msub><msup><mrow><mo>〈</mo><mi>ν</mi><mo>,</mo><mi>x</mi><mo>〉</mo></mrow><mrow><mi>k</mi><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></msup><mi>d</mi><mi>x</mi></math></span>. Next, consider the Dunkl transform denoted by <span><math><mi>F</mi></math></span>. We introduce the multiplier operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, defined as <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub><mi>f</mi><mo>=</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>m</mi><mi>F</mi><mi>f</mi><mo>)</mo></math></span>, where <em>m</em> is a bounded function defined on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Our second aim is to prove multiplier theorems, including the Hörmander multiplier theorem, for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> on the Besov and Tribel-Lizorkin spaces in the space of homogeneous type <span><math><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>,</mo><mi>d</mi><mi>w</mi><mo>)</mo></math></span>. Importantly, our findings present novel results, even in the specific case of the Hardy spaces.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"199 ","pages":"Article 103725"},"PeriodicalIF":2.1,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143917987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long time behaviour of the solution of Maxwell's equations in dissipative generalized Lorentz materials (II) A modal approach 耗散广义洛伦兹材料中麦克斯韦方程组解的长时间行为(II)一个模态方法
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-04-28 DOI: 10.1016/j.matpur.2025.103720
Maxence Cassier , Patrick Joly , Luis Alejandro Rosas Martínez
{"title":"Long time behaviour of the solution of Maxwell's equations in dissipative generalized Lorentz materials (II) A modal approach","authors":"Maxence Cassier ,&nbsp;Patrick Joly ,&nbsp;Luis Alejandro Rosas Martínez","doi":"10.1016/j.matpur.2025.103720","DOIUrl":"10.1016/j.matpur.2025.103720","url":null,"abstract":"<div><div>This work concerns the analysis of electromagnetic dispersive media modelled by generalized Lorentz models. More precisely, this paper is the second of two articles dedicated to the long time behaviour of solutions of Maxwell's equations in dissipative Lorentz media, via the decay rate of the electromagnetic energy for the corresponding Cauchy problem. In opposition to the frequency dependent Lyapunov functions approach used in <span><span>[4]</span></span>, we develop a method based on the spectral analysis of the underlying non selfadjoint operator of the model. Although more involved, this approach is closer to physics, as it uses the dispersion relation of the model, and has the advantage to provide more precise and more optimal results, leading to distinguish the notion of weak and strong dissipation.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"201 ","pages":"Article 103720"},"PeriodicalIF":2.1,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Almost-everywhere uniqueness of Lagrangian trajectories for 3D Navier–Stokes revisited 重新审视了三维纳维-斯托克斯拉格朗日轨迹的几乎处处唯一性
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-04-28 DOI: 10.1016/j.matpur.2025.103723
Lucio Galeati
{"title":"Almost-everywhere uniqueness of Lagrangian trajectories for 3D Navier–Stokes revisited","authors":"Lucio Galeati","doi":"10.1016/j.matpur.2025.103723","DOIUrl":"10.1016/j.matpur.2025.103723","url":null,"abstract":"<div><div>We show that, for any Leray solution <em>u</em> to the 3D Navier–Stokes equations with <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, the associated deterministic and stochastic Lagrangian trajectories are unique for <em>Lebesgue a.e.</em> initial condition. Additionally, if <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, then pathwise uniqueness is established for the stochastic Lagrangian trajectories starting from <em>every</em> initial condition. The result sharpens and extends the original one by Robinson and Sadowski <span><span>[1]</span></span> and is based on rather different techniques. A key role is played by a newly established asymmetric Lusin–Lipschitz property of Leray solutions <em>u</em>, in the framework of (random) Regular Lagrangian flows.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"200 ","pages":"Article 103723"},"PeriodicalIF":2.1,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143907562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sticky-reflecting diffusion as a Wasserstein gradient flow 作为Wasserstein梯度流的粘反射扩散
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-04-25 DOI: 10.1016/j.matpur.2025.103721
Jean-Baptiste Casteras , Léonard Monsaingeon , Filippo Santambrogio
{"title":"Sticky-reflecting diffusion as a Wasserstein gradient flow","authors":"Jean-Baptiste Casteras ,&nbsp;Léonard Monsaingeon ,&nbsp;Filippo Santambrogio","doi":"10.1016/j.matpur.2025.103721","DOIUrl":"10.1016/j.matpur.2025.103721","url":null,"abstract":"<div><div>In this paper we identify the Fokker-Planck equation for (reflected) Sticky Brownian Motion as a Wasserstein gradient flow in the space of probability measures. The driving functional is the relative entropy with respect to a non-standard reference measure, the sum of an absolutely continuous interior part plus a singular part supported on the boundary. Taking the small time-step limit in a minimizing movement (JKO scheme) we prove existence of weak solutions for the coupled system of PDEs satisfying in addition an Energy Dissipation Inequality.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"199 ","pages":"Article 103721"},"PeriodicalIF":2.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An explicit Euler method for Sobolev vector fields with applications to the continuity equation on non Cartesian grids Sobolev矢量场的显式欧拉方法及其在非笛卡尔网格上连续性方程的应用
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-04-25 DOI: 10.1016/j.matpur.2025.103722
Tommaso Cortopassi
{"title":"An explicit Euler method for Sobolev vector fields with applications to the continuity equation on non Cartesian grids","authors":"Tommaso Cortopassi","doi":"10.1016/j.matpur.2025.103722","DOIUrl":"10.1016/j.matpur.2025.103722","url":null,"abstract":"<div><div>We prove a novel stability estimate in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></math></span> between the regular Lagrangian flow of a Sobolev vector field and a piecewise affine approximation of such flow. This approximation of the flow is obtained by a (sort of) explicit Euler method, and it is the crucial tool to prove approximation results for the solution of the continuity equation by using the representation of the solution as the push-forward via the regular Lagrangian flow of the initial datum. We approximate the solution in two ways, using different approximations for both the flow and the initial datum. In the first case we give an estimate, which however holds only in probability, of the Wasserstein distance between the solution of the continuity equation and a discrete approximation of such solution. The approximate solution is defined as the push-forward of weighted Dirac deltas (whose centers are chosen in a probabilistic way). In the second case we give a deterministic estimate of the Wasserstein distance using a slightly different approximation of the regular Lagrangian flow and requiring more regularity on the velocity field <em>u</em> than in the previous case. An advantage of both approximations is that they provide an algorithm which is easily parallelizable and does not rely on any particular structure of the mesh with which we discretize (only in space) the domain. We also compare our estimates to similar ones previously obtained in <span><span>[27]</span></span>, and we show how under certain hypotheses our method provides better convergence rates.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"199 ","pages":"Article 103722"},"PeriodicalIF":2.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viscosity driven instability of shear flows without boundaries 无边界剪切流黏度驱动的不稳定性
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-04-25 DOI: 10.1016/j.matpur.2025.103724
Hui Li , Weiren Zhao
{"title":"Viscosity driven instability of shear flows without boundaries","authors":"Hui Li ,&nbsp;Weiren Zhao","doi":"10.1016/j.matpur.2025.103724","DOIUrl":"10.1016/j.matpur.2025.103724","url":null,"abstract":"<div><div>In this paper, we study the instability effect of viscous dissipation in a domain without boundaries. We construct a shear flow that is initially spectrally stable but evolves into a spectrally unstable state under the influence of viscous dissipation. To the best of our knowledge, this is the first result of viscosity driven instability that is not caused by boundaries.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"200 ","pages":"Article 103724"},"PeriodicalIF":2.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143895009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of periodic Dirac–Fock functional and minimizers 周期Dirac-Fock泛函与极小化器的性质
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-04-25 DOI: 10.1016/j.matpur.2025.103719
Isabelle Catto , Long Meng
{"title":"Properties of periodic Dirac–Fock functional and minimizers","authors":"Isabelle Catto ,&nbsp;Long Meng","doi":"10.1016/j.matpur.2025.103719","DOIUrl":"10.1016/j.matpur.2025.103719","url":null,"abstract":"<div><div>Existence of minimizers for the Dirac–Fock model for crystals was recently proved by Paturel and Séré and the authors <span><span>[9]</span></span>. In this paper, inspired by Ghimenti and Lewin's result <span><span>[13]</span></span> for the periodic Hartree–Fock model, we prove that the Fermi level of any periodic Dirac–Fock minimizer is either empty or totally filled when <span><math><mfrac><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> and <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>. Here <em>c</em> is the speed of light, <em>α</em> is the fine structure constant, and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> is a constant only depending on the number of electrons and on the charge of nuclei per cell. More importantly, we provide an explicit upper bound for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span>.</div><div>Our result implies that any minimizer of the periodic Dirac–Fock model is a projector when <span><math><mfrac><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> and <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>. In particular, the non-relativistic regime (i.e., <span><math><mi>c</mi><mo>≫</mo><mn>1</mn></math></span>) and the weak coupling regime (i.e., <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≪</mo><mn>1</mn></math></span>) are covered.</div><div>The proof is based on a delicate study of a second-order expansion of the periodic Dirac–Fock functional composed with a retraction that was introduced by Séré in <span><span>[24]</span></span> for atoms and molecules and later extended to the case of crystals in <span><span>[9]</span></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"201 ","pages":"Article 103719"},"PeriodicalIF":2.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144067943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical mass phenomena and blow-up behaviors of ground states in stationary second order mean-field games systems with decreasing cost 代价递减的平稳二阶平均场对策系统基态的临界质量现象和爆炸行为
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-25 DOI: 10.1016/j.matpur.2025.103687
Marco Cirant , Fanze Kong , Juncheng Wei , Xiaoyu Zeng
{"title":"Critical mass phenomena and blow-up behaviors of ground states in stationary second order mean-field games systems with decreasing cost","authors":"Marco Cirant ,&nbsp;Fanze Kong ,&nbsp;Juncheng Wei ,&nbsp;Xiaoyu Zeng","doi":"10.1016/j.matpur.2025.103687","DOIUrl":"10.1016/j.matpur.2025.103687","url":null,"abstract":"<div><div>This paper is devoted to the study of Mean-field Games (MFG) systems in the mass-critical exponent case. We first derive the optimal Gagliardo-Nirenberg type inequality associated with the potential-free MFG system. Then, under some mild assumptions on the potential function, we show that there exists a critical mass <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> such that the MFG system admits a least-energy solution if and only if the total mass of population density <em>M</em> satisfies <span><math><mi>M</mi><mo>&lt;</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Moreover, the blow-up behavior of energy minimizers is characterized as <span><math><mi>M</mi><mo>↗</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. In particular, by considering the precise asymptotic expansions of the potential, we establish the refined blow-up behavior of ground states as <span><math><mi>M</mi><mo>↗</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. While studying the existence of least-energy solutions, we establish new local <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> estimates for solutions to Hamilton-Jacobi equations with superlinear gradient terms.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"198 ","pages":"Article 103687"},"PeriodicalIF":2.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstruction along a geodesic from sphere data in Finsler geometry and anisotropic elasticity 基于Finsler几何和各向异性弹性的球面数据沿测地线重建
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-24 DOI: 10.1016/j.matpur.2025.103688
Maarten V. de Hoop , Joonas Ilmavirta , Matti Lassas
{"title":"Reconstruction along a geodesic from sphere data in Finsler geometry and anisotropic elasticity","authors":"Maarten V. de Hoop ,&nbsp;Joonas Ilmavirta ,&nbsp;Matti Lassas","doi":"10.1016/j.matpur.2025.103688","DOIUrl":"10.1016/j.matpur.2025.103688","url":null,"abstract":"<div><div>Dix formulated the inverse problem of recovering an elastic body from the measurements of wave fronts of point sources. We geometrize this problem in the context of seismology, leading to the geometrical inverse problem of recovering a Finsler manifold from certain sphere data in a given open subset of the manifold. We solve this problem locally along any geodesic through the measurement set.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"196 ","pages":"Article 103688"},"PeriodicalIF":2.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143507519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blowing up Chern-Ricci flat balanced metrics 打破陈-利玛窦的平面平衡参数
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-24 DOI: 10.1016/j.matpur.2025.103691
Elia Fusi , Federico Giusti
{"title":"Blowing up Chern-Ricci flat balanced metrics","authors":"Elia Fusi ,&nbsp;Federico Giusti","doi":"10.1016/j.matpur.2025.103691","DOIUrl":"10.1016/j.matpur.2025.103691","url":null,"abstract":"<div><div>Given a compact Chern-Ricci flat balanced orbifold, we show that its blow-up at a finite family of smooth points admits constant Chern scalar curvature balanced metrics, extending Arezzo-Pacard's construction to the balanced setting. Moreover, if the orbifold has isolated singularities and admits crepant resolutions, we show that they always carry Chern-Ricci flat balanced metrics, without any further hypothesis. Along the way, we study two Lichnerowicz-type operators originating from complex connections and investigate the relation between their kernel and holomorphic vector fields, with the aim of discussing the general constant Chern scalar curvature balanced case. Ultimately, we provide a variation of the main Theorem assuming the existence of a special <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span>-form and we present several classes of examples in which all our results can be applied.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"197 ","pages":"Article 103691"},"PeriodicalIF":2.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信