Journal de Mathematiques Pures et Appliquees最新文献

筛选
英文 中文
Cylindrical estimates for the Cheeger constant and applications
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-01 DOI: 10.1016/j.matpur.2024.103633
Aldo Pratelli , Giorgio Saracco
{"title":"Cylindrical estimates for the Cheeger constant and applications","authors":"Aldo Pratelli ,&nbsp;Giorgio Saracco","doi":"10.1016/j.matpur.2024.103633","DOIUrl":"10.1016/j.matpur.2024.103633","url":null,"abstract":"<div><div>We prove a lower bound for the Cheeger constant of a cylinder <span><math><mi>Ω</mi><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>L</mi><mo>)</mo></math></span>, where Ω is an open and bounded set. As a consequence, we obtain existence of minimizers for the shape functional defined as the ratio between the first Dirichlet eigenvalue of the <em>p</em>-Laplacian and the <em>p</em>-th power of the Cheeger constant, within the class of bounded convex sets in any <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. This positively solves open conjectures raised by Parini (<em>J. Convex Anal.</em> (2017)) and by Briani–Buttazzo–Prinari (<em>Ann. Mat. Pura Appl.</em> (2023)).</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103633"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local existence of solutions to 3D Prandtl equations with a special structure
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-01 DOI: 10.1016/j.matpur.2025.103670
Yuming Qin , Xiuqing Wang
{"title":"Local existence of solutions to 3D Prandtl equations with a special structure","authors":"Yuming Qin ,&nbsp;Xiuqing Wang","doi":"10.1016/j.matpur.2025.103670","DOIUrl":"10.1016/j.matpur.2025.103670","url":null,"abstract":"<div><div>In this paper, we consider the 3D Prandtl equation in a periodic domain and prove the local existence and uniqueness of solutions by the energy method in a polynomial weighted Sobolev space. Compared to the existence and uniqueness of solutions to the classical Prandtl equations where the Crocco transform has always been used with the general outer flow <span><math><mi>U</mi><mo>≠</mo><mtext>constant</mtext></math></span>, this Crocco transform is not needed here for 3D Prandtl equations. We use the skill of cancellation mechanism and construct a new unknown function to show that the existence and uniqueness of solutions to 3D Prandtl equations (cf. Masmoudi and Wong (2015) <span><span>[1]</span></span>) which extends from the two dimensional case in <span><span>[1]</span></span> to the present three dimensional case with a special structure.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103670"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of trapped surfaces in the Einstein-Yang-Mills system
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-01 DOI: 10.1016/j.matpur.2025.103661
Nikolaos Athanasiou , Puskar Mondal , Shing-Tung Yau
{"title":"Formation of trapped surfaces in the Einstein-Yang-Mills system","authors":"Nikolaos Athanasiou ,&nbsp;Puskar Mondal ,&nbsp;Shing-Tung Yau","doi":"10.1016/j.matpur.2025.103661","DOIUrl":"10.1016/j.matpur.2025.103661","url":null,"abstract":"<div><div>We prove a scale-invariant, semi-global existence result and a trapped surface formation result in the context of coupled Einstein-Yang-Mills theory, without symmetry assumptions. More precisely, we prove a scale-invariant semi-global existence theorem and show that the focusing of the gravitational and/or chromoelectric-chromomagnetic waves could lead to the formation of a trapped surface. Adopting the signature for decay rates approach introduced in <span><span>[1]</span></span>, we develop a novel gauge (and scale) invariant hierarchy of non-linear estimates for the Yang-Mills curvature which, together with the estimates for the gravitational degrees of freedom, yields the desired semi-global existence result. Once semi-global existence has been established, the formation of a trapped surface follows from a standard ODE argument.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103661"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogenization of non-autonomous evolution problems for convolution type operators in randomly evolving media
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-01 DOI: 10.1016/j.matpur.2025.103660
A. Piatnitski , E. Zhizhina
{"title":"Homogenization of non-autonomous evolution problems for convolution type operators in randomly evolving media","authors":"A. Piatnitski ,&nbsp;E. Zhizhina","doi":"10.1016/j.matpur.2025.103660","DOIUrl":"10.1016/j.matpur.2025.103660","url":null,"abstract":"<div><div>We study homogenization problem for non-autonomous parabolic equations of the form <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>L</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>u</mi></math></span> with an integral convolution type operator <span><math><mi>L</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> that has a non-symmetric jump kernel which is periodic in spatial variables and stationary random in time. We show that asymptotically the spatial and temporal evolutions of the solutions are getting decoupled and can be described separately, and, under additional mixing conditions on the coefficient, the homogenized equation is a SPDE with a finite dimensional multiplicative noise.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103660"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph-to-local limit for the nonlocal interaction equation
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-01 DOI: 10.1016/j.matpur.2025.103663
Antonio Esposito , Georg Heinze , André Schlichting
{"title":"Graph-to-local limit for the nonlocal interaction equation","authors":"Antonio Esposito ,&nbsp;Georg Heinze ,&nbsp;André Schlichting","doi":"10.1016/j.matpur.2025.103663","DOIUrl":"10.1016/j.matpur.2025.103663","url":null,"abstract":"<div><div>We study a class of nonlocal partial differential equations presenting a tensor-mobility, in space, obtained asymptotically from nonlocal dynamics on localizing infinite graphs. Our strategy relies on the variational structure of both equations, being a Riemannian and Finslerian gradient flow, respectively. More precisely, we prove that weak solutions of the nonlocal interaction equation on graphs converge to weak solutions of the aforementioned class of nonlocal interaction equation with a tensor-mobility in the Euclidean space. This highlights an interesting property of the graph, being a potential space-discretization for the equation under study.</div><div><span>Résumé</span>. Nous étudions une classe d'équations aux dérivées partielles non locales présentant une mobilité tensorielle, dans l'espace, obtenue asymptotiquement à partir de dynamiques non locales sur des graphes infinis localisants. Notre stratégie repose sur la structure variationnelle des deux équations, qui sont respectivement un flot de gradients riemannien et finslérien. Plus précisément, nous prouvons que les solutions faibles de l'équation d'interaction non locale sur les graphes convergent vers des solutions faibles de la classe mentionnée d'équations d'interaction non locales avec une mobilité tensorielle dans l'espace euclidien. Cela met en évidence une propriété intéressante du graphe, à savoir une discrétisation spatiale potentielle pour l'équation étudiée.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103663"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From transient elastic linkages to friction: A complete study of a penalized fourth order equation with delay
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-01 DOI: 10.1016/j.matpur.2025.103665
Vuk Milišić , Philippe Souplet
{"title":"From transient elastic linkages to friction: A complete study of a penalized fourth order equation with delay","authors":"Vuk Milišić ,&nbsp;Philippe Souplet","doi":"10.1016/j.matpur.2025.103665","DOIUrl":"10.1016/j.matpur.2025.103665","url":null,"abstract":"<div><div><strong>(English)</strong> In this paper we consider a fourth order nonlinear parabolic delayed problem modeling a quasi-instantaneous turn-over of linkages in the context of cell-motility. The model depends on a small parameter <em>ε</em> which represents a typical time scale of the memory effect. We first prove global existence and uniqueness of solutions for <em>ε</em> fixed. This is achieved by combining suitable fixed-point and energy arguments and by uncovering a nonlocal in time, conserved integral quantity. After giving a complete classification of steady states in terms of elliptic functions, we next show that every solution converges to a steady state as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. When <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>, we then establish convergence results on finite time intervals, showing that the solution tends in a suitable sense towards the solution of a parabolic problem without delay. Moreover, we establish the convergence of energies as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>, which enables us to show that, for <em>ε</em> small enough, the <em>ε</em>-dependent problem inherits part of the large time asymptotics of the limiting parabolic problem.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103665"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximation and perturbations of stable solutions to a stationary mean field game system
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-01 DOI: 10.1016/j.matpur.2025.103666
Jules Berry , Olivier Ley , Francisco J. Silva
{"title":"Approximation and perturbations of stable solutions to a stationary mean field game system","authors":"Jules Berry ,&nbsp;Olivier Ley ,&nbsp;Francisco J. Silva","doi":"10.1016/j.matpur.2025.103666","DOIUrl":"10.1016/j.matpur.2025.103666","url":null,"abstract":"<div><div>This work introduces a new general approach for the numerical analysis of stable equilibria to second order mean field games systems in cases where the uniqueness of solutions may fail. We focus on a stationary case with a purely quadratic Hamiltonian. We propose an abstract framework to study these solutions by reformulating the mean field game system as an abstract equation in a Banach space. In this context, stable equilibria turn out to be regular solutions to this equation, meaning that the linearized system is well-posed. We provide three applications of this property: we study the sensitivity analysis of stable solutions, establish error estimates for their finite element approximations, and prove the local converge of Newton's method in infinite dimensions.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103666"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bistable pulsating fronts in slowly oscillating one-dimensional environments
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-01 DOI: 10.1016/j.matpur.2025.103668
Weiwei Ding , François Hamel , Xing Liang
{"title":"Bistable pulsating fronts in slowly oscillating one-dimensional environments","authors":"Weiwei Ding ,&nbsp;François Hamel ,&nbsp;Xing Liang","doi":"10.1016/j.matpur.2025.103668","DOIUrl":"10.1016/j.matpur.2025.103668","url":null,"abstract":"<div><div>We consider reaction-diffusion fronts in spatially periodic bistable media with large periods. Whereas the homogenization regime associated with small periods had been well studied for bistable or Fisher-KPP reactions and, in the latter case, a formula for the limit minimal speeds of fronts in media with large periods had also been obtained thanks to the linear formulation of these minimal speeds and their monotonicity with respect to the period, the main remaining open question is concerned with fronts in bistable environments with large periods. In bistable media the unique front speeds are not linearly determined and are not monotone with respect to the spatial period in general, making the analysis of the limit of large periods more intricate. We show in this paper the existence of and an explicit formula for the limit of bistable front speeds as the spatial period goes to infinity. We also prove that the front profiles converge to a family of front profiles associated with spatially homogeneous equations. The main results are based on uniform estimates on the spatial width of the fronts, which themselves use zero number properties and intersection arguments.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103668"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform concentration property for Griffith almost-minimizers
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-01 DOI: 10.1016/j.matpur.2025.103667
Camille Labourie , Antoine Lemenant
{"title":"Uniform concentration property for Griffith almost-minimizers","authors":"Camille Labourie ,&nbsp;Antoine Lemenant","doi":"10.1016/j.matpur.2025.103667","DOIUrl":"10.1016/j.matpur.2025.103667","url":null,"abstract":"<div><div>We prove that a Hausdorff limit of Griffith almost-minimizers remains a Griffith almost-minimizer. For this purpose, we introduce a new approach to the uniform concentration property of Dal Maso, Morel and Solimini which does not rely on the coarea formula, non available for symmetric gradient. We then develop several applications, including a general procedure to obtain global minimizers via blow-up limits.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103667"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On integral convexity, variational solutions and nonlinear semigroups
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-02-01 DOI: 10.1016/j.matpur.2025.103662
Seonghak Kim , Baisheng Yan
{"title":"On integral convexity, variational solutions and nonlinear semigroups","authors":"Seonghak Kim ,&nbsp;Baisheng Yan","doi":"10.1016/j.matpur.2025.103662","DOIUrl":"10.1016/j.matpur.2025.103662","url":null,"abstract":"<div><div>In this paper we provide a different approach for existence of the variational solutions of the gradient flows associated to functionals on Sobolev spaces studied in the paper by Bögelein et al. (2020) <span><span>[7]</span></span>. The crucial condition is the convexity of the functional under which we show that the variational solutions coincide with the solutions generated by the nonlinear semigroup associated to the functional. For integral functionals of the form <span><math><mi>F</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi></math></span>, where <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span> is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> in <em>ξ</em>, we also make some remarks on the connections between convexity of <strong>F</strong> (called the integral convexity of <em>f</em>) and certain monotonicity conditions of the gradient map <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mi>f</mi></math></span>. In particular, we provide an example to show that even for functions of the simple form <span><math><mi>f</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span>, the usual quasimonotonicity of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mi>f</mi></math></span> is not sufficient for the integral convexity of <em>f</em>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103662"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信