{"title":"具有l1型偏差的Alexandrov肥皂泡定理的冒泡和定量稳定性","authors":"Giorgio Poggesi","doi":"10.1016/j.matpur.2025.103784","DOIUrl":null,"url":null,"abstract":"<div><div>The quantitative analysis of bubbling phenomena for almost constant mean curvature boundaries is an important question having significant applications in various fields including capillarity theory and the study of mean curvature flows. Such a quantitative analysis was initiated in Ciraolo and Maggi (2017) <span><span>[3]</span></span>, where the first quantitative result of proximity to a set of disjoint balls of equal radii was obtained in terms of a uniform deviation of the mean curvature from being constant. Weakening the measure of the deviation in such a result is a delicate issue that is crucial in view of the applications for mean curvature flows. Some progress in this direction was recently made in Julin and Niinikoski (2023) <span><span>[12]</span></span>, where <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>-deviations are considered for domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. In the present paper we significantly weaken the measure of the deviation, obtaining a quantitative result of proximity to a set of disjoint balls of equal radii for the following deviation<span><span><span><math><munder><mo>∫</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow></munder><msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup><mi>d</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mspace></mspace><mtext> where </mtext><mrow><mo>{</mo><mtable><mtr><mtd><mi>H</mi><mtext> is the mean curvature of </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mo>|</mo><mo>∂</mo><mi>Ω</mi><mo>|</mo></mrow><mrow><mi>N</mi><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>max</mi><mo></mo><mrow><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>,</mo><mn>0</mn><mo>}</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> which is clearly even weaker than <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></mrow></msub></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103784"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubbling and quantitative stability for Alexandrov's Soap Bubble Theorem with L1-type deviations\",\"authors\":\"Giorgio Poggesi\",\"doi\":\"10.1016/j.matpur.2025.103784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The quantitative analysis of bubbling phenomena for almost constant mean curvature boundaries is an important question having significant applications in various fields including capillarity theory and the study of mean curvature flows. Such a quantitative analysis was initiated in Ciraolo and Maggi (2017) <span><span>[3]</span></span>, where the first quantitative result of proximity to a set of disjoint balls of equal radii was obtained in terms of a uniform deviation of the mean curvature from being constant. Weakening the measure of the deviation in such a result is a delicate issue that is crucial in view of the applications for mean curvature flows. Some progress in this direction was recently made in Julin and Niinikoski (2023) <span><span>[12]</span></span>, where <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>-deviations are considered for domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. In the present paper we significantly weaken the measure of the deviation, obtaining a quantitative result of proximity to a set of disjoint balls of equal radii for the following deviation<span><span><span><math><munder><mo>∫</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow></munder><msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup><mi>d</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mspace></mspace><mtext> where </mtext><mrow><mo>{</mo><mtable><mtr><mtd><mi>H</mi><mtext> is the mean curvature of </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mo>|</mo><mo>∂</mo><mi>Ω</mi><mo>|</mo></mrow><mrow><mi>N</mi><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>max</mi><mo></mo><mrow><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>,</mo><mn>0</mn><mo>}</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> which is clearly even weaker than <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103784\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002178242500128X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002178242500128X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bubbling and quantitative stability for Alexandrov's Soap Bubble Theorem with L1-type deviations
The quantitative analysis of bubbling phenomena for almost constant mean curvature boundaries is an important question having significant applications in various fields including capillarity theory and the study of mean curvature flows. Such a quantitative analysis was initiated in Ciraolo and Maggi (2017) [3], where the first quantitative result of proximity to a set of disjoint balls of equal radii was obtained in terms of a uniform deviation of the mean curvature from being constant. Weakening the measure of the deviation in such a result is a delicate issue that is crucial in view of the applications for mean curvature flows. Some progress in this direction was recently made in Julin and Niinikoski (2023) [12], where -deviations are considered for domains in . In the present paper we significantly weaken the measure of the deviation, obtaining a quantitative result of proximity to a set of disjoint balls of equal radii for the following deviation which is clearly even weaker than .
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.