具有l1型偏差的Alexandrov肥皂泡定理的冒泡和定量稳定性

IF 2.3 1区 数学 Q1 MATHEMATICS
Giorgio Poggesi
{"title":"具有l1型偏差的Alexandrov肥皂泡定理的冒泡和定量稳定性","authors":"Giorgio Poggesi","doi":"10.1016/j.matpur.2025.103784","DOIUrl":null,"url":null,"abstract":"<div><div>The quantitative analysis of bubbling phenomena for almost constant mean curvature boundaries is an important question having significant applications in various fields including capillarity theory and the study of mean curvature flows. Such a quantitative analysis was initiated in Ciraolo and Maggi (2017) <span><span>[3]</span></span>, where the first quantitative result of proximity to a set of disjoint balls of equal radii was obtained in terms of a uniform deviation of the mean curvature from being constant. Weakening the measure of the deviation in such a result is a delicate issue that is crucial in view of the applications for mean curvature flows. Some progress in this direction was recently made in Julin and Niinikoski (2023) <span><span>[12]</span></span>, where <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>-deviations are considered for domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. In the present paper we significantly weaken the measure of the deviation, obtaining a quantitative result of proximity to a set of disjoint balls of equal radii for the following deviation<span><span><span><math><munder><mo>∫</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow></munder><msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup><mi>d</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mspace></mspace><mtext> where </mtext><mrow><mo>{</mo><mtable><mtr><mtd><mi>H</mi><mtext> is the mean curvature of </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mo>|</mo><mo>∂</mo><mi>Ω</mi><mo>|</mo></mrow><mrow><mi>N</mi><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>,</mo><mn>0</mn><mo>}</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> which is clearly even weaker than <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></mrow></msub></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103784"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubbling and quantitative stability for Alexandrov's Soap Bubble Theorem with L1-type deviations\",\"authors\":\"Giorgio Poggesi\",\"doi\":\"10.1016/j.matpur.2025.103784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The quantitative analysis of bubbling phenomena for almost constant mean curvature boundaries is an important question having significant applications in various fields including capillarity theory and the study of mean curvature flows. Such a quantitative analysis was initiated in Ciraolo and Maggi (2017) <span><span>[3]</span></span>, where the first quantitative result of proximity to a set of disjoint balls of equal radii was obtained in terms of a uniform deviation of the mean curvature from being constant. Weakening the measure of the deviation in such a result is a delicate issue that is crucial in view of the applications for mean curvature flows. Some progress in this direction was recently made in Julin and Niinikoski (2023) <span><span>[12]</span></span>, where <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>-deviations are considered for domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. In the present paper we significantly weaken the measure of the deviation, obtaining a quantitative result of proximity to a set of disjoint balls of equal radii for the following deviation<span><span><span><math><munder><mo>∫</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow></munder><msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup><mi>d</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mspace></mspace><mtext> where </mtext><mrow><mo>{</mo><mtable><mtr><mtd><mi>H</mi><mtext> is the mean curvature of </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mo>|</mo><mo>∂</mo><mi>Ω</mi><mo>|</mo></mrow><mrow><mi>N</mi><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>,</mo><mn>0</mn><mo>}</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> which is clearly even weaker than <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>H</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103784\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002178242500128X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002178242500128X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在几乎恒定的平均曲率边界上气泡现象的定量分析是一个重要的问题,在包括毛细理论和平均曲率流动研究在内的各个领域都有重要的应用。Ciraolo和Maggi(2017)[3]开始了这样的定量分析,其中根据平均曲率与常数的均匀偏差,获得了接近一组半径相等的不相交球的第一个定量结果。弱化这种结果中偏差的度量是一个微妙的问题,考虑到平均曲率流的应用,这是至关重要的。最近Julin和Niinikoski(2023)[12]在这一方向上取得了一些进展,其中考虑了RN域中的LN−1偏差。在本文中,我们显著地削弱了对偏差的度量,得到了对以下偏差∫∂Ω(H0−H)+dSx接近一组半径相等的不相交球的定量结果,其中{H是∂Ω的平均曲率,H0:=|∂Ω|N|Ω|,(H0−H)+:=max∑{H0−H,0},这显然比‖H0−H‖L1(∂Ω)更弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bubbling and quantitative stability for Alexandrov's Soap Bubble Theorem with L1-type deviations
The quantitative analysis of bubbling phenomena for almost constant mean curvature boundaries is an important question having significant applications in various fields including capillarity theory and the study of mean curvature flows. Such a quantitative analysis was initiated in Ciraolo and Maggi (2017) [3], where the first quantitative result of proximity to a set of disjoint balls of equal radii was obtained in terms of a uniform deviation of the mean curvature from being constant. Weakening the measure of the deviation in such a result is a delicate issue that is crucial in view of the applications for mean curvature flows. Some progress in this direction was recently made in Julin and Niinikoski (2023) [12], where LN1-deviations are considered for domains in RN. In the present paper we significantly weaken the measure of the deviation, obtaining a quantitative result of proximity to a set of disjoint balls of equal radii for the following deviationΩ(H0H)+dSx, where {H is the mean curvature of Ω,H0:=|Ω|N|Ω|,(H0H)+:=max{H0H,0}, which is clearly even weaker than H0HL1(Ω).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信