谐振子谐波链中远距离相互作用的频谱分析和相变

IF 2.3 1区 数学 Q1 MATHEMATICS
Simon Becker , Angeliki Menegaki , Jiming Yu
{"title":"谐振子谐波链中远距离相互作用的频谱分析和相变","authors":"Simon Becker ,&nbsp;Angeliki Menegaki ,&nbsp;Jiming Yu","doi":"10.1016/j.matpur.2025.103796","DOIUrl":null,"url":null,"abstract":"<div><div>We consider chains of <em>N</em> harmonic oscillators in two dimensions coupled to a Langevin heat reservoir at fixed temperature, a classical model for heat conduction introduced by Lebowitz, Lieb, and Rieder (1967). We extend our previous results (Becker and Menegaki, 2021) significantly by providing a full spectral description of the full Fokker-Planck operator, also allowing for the presence of a constant external magnetic field for charged oscillators. We then study oscillator chains with additional next-to-nearest-neighbor interactions and find that the spectral gap undergoes a phase transition if the next-to-nearest-neighbor interactions are sufficiently strong and may even cease to exist for oscillator chains of finite length.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103796"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral analysis and phase transitions for long-range interactions in harmonic chains of oscillators\",\"authors\":\"Simon Becker ,&nbsp;Angeliki Menegaki ,&nbsp;Jiming Yu\",\"doi\":\"10.1016/j.matpur.2025.103796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider chains of <em>N</em> harmonic oscillators in two dimensions coupled to a Langevin heat reservoir at fixed temperature, a classical model for heat conduction introduced by Lebowitz, Lieb, and Rieder (1967). We extend our previous results (Becker and Menegaki, 2021) significantly by providing a full spectral description of the full Fokker-Planck operator, also allowing for the presence of a constant external magnetic field for charged oscillators. We then study oscillator chains with additional next-to-nearest-neighbor interactions and find that the spectral gap undergoes a phase transition if the next-to-nearest-neighbor interactions are sufficiently strong and may even cease to exist for oscillator chains of finite length.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103796\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001400\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001400","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑二维N个谐振子链与固定温度下的朗之万热源耦合,朗之万热源是Lebowitz, Lieb和Rieder(1967)引入的热传导经典模型。我们扩展了之前的结果(Becker和Menegaki, 2021),提供了完整的福克-普朗克算子的全光谱描述,也允许带电振荡器存在恒定的外部磁场。然后,我们研究了具有额外的次近邻相互作用的振子链,发现如果次近邻相互作用足够强,谱隙会经历相变,对于有限长度的振子链甚至可能不存在谱隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral analysis and phase transitions for long-range interactions in harmonic chains of oscillators
We consider chains of N harmonic oscillators in two dimensions coupled to a Langevin heat reservoir at fixed temperature, a classical model for heat conduction introduced by Lebowitz, Lieb, and Rieder (1967). We extend our previous results (Becker and Menegaki, 2021) significantly by providing a full spectral description of the full Fokker-Planck operator, also allowing for the presence of a constant external magnetic field for charged oscillators. We then study oscillator chains with additional next-to-nearest-neighbor interactions and find that the spectral gap undergoes a phase transition if the next-to-nearest-neighbor interactions are sufficiently strong and may even cease to exist for oscillator chains of finite length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信