一类非线性符号急剧变化的半线性椭圆方程的多重解

IF 2.3 1区 数学 Q1 MATHEMATICS
Mónica Clapp , Angela Pistoia , Alberto Saldaña
{"title":"一类非线性符号急剧变化的半线性椭圆方程的多重解","authors":"Mónica Clapp ,&nbsp;Angela Pistoia ,&nbsp;Alberto Saldaña","doi":"10.1016/j.matpur.2025.103783","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a nonautonomous semilinear elliptic problem where the power-type nonlinearity is multiplied by a discontinuous coefficient that takes the value one inside a bounded open set Ω and minus one in its complement. In the slightly subcritical regime, we prove the existence of concentrating positive and nodal solutions. Moreover, depending on the geometry of Ω, we establish multiplicity of positive solutions. Finally, in the critical case, we show the existence of a blow-up positive solution when Ω has nontrivial topology. Our proofs rely on a Lyapunov-Schmidt reduction strategy which in these problems turns out to be remarkably simple. We take this opportunity to highlight certain aspects of the method that are often overlooked and present it in a more accessible and detailed manner for nonexperts.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103783"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions to a semilinear elliptic equation with a sharp change of sign in the nonlinearity\",\"authors\":\"Mónica Clapp ,&nbsp;Angela Pistoia ,&nbsp;Alberto Saldaña\",\"doi\":\"10.1016/j.matpur.2025.103783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a nonautonomous semilinear elliptic problem where the power-type nonlinearity is multiplied by a discontinuous coefficient that takes the value one inside a bounded open set Ω and minus one in its complement. In the slightly subcritical regime, we prove the existence of concentrating positive and nodal solutions. Moreover, depending on the geometry of Ω, we establish multiplicity of positive solutions. Finally, in the critical case, we show the existence of a blow-up positive solution when Ω has nontrivial topology. Our proofs rely on a Lyapunov-Schmidt reduction strategy which in these problems turns out to be remarkably simple. We take this opportunity to highlight certain aspects of the method that are often overlooked and present it in a more accessible and detailed manner for nonexperts.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103783\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001278\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001278","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个非自治半线性椭圆问题,其中幂型非线性乘以一个不连续系数,该系数在有界开集Ω内取1,在其补集中取- 1。在微次临界区,我们证明了集中正解和节点解的存在性。此外,根据Ω的几何性质,我们建立了正解的多重性。最后,在临界情况下,我们证明了Ω具有非平凡拓扑时爆破正解的存在性。我们的证明依赖于Lyapunov-Schmidt约简策略,这个策略在这些问题中非常简单。我们借此机会强调该方法经常被忽视的某些方面,并以非专家更容易理解和详细的方式呈现它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple solutions to a semilinear elliptic equation with a sharp change of sign in the nonlinearity
We consider a nonautonomous semilinear elliptic problem where the power-type nonlinearity is multiplied by a discontinuous coefficient that takes the value one inside a bounded open set Ω and minus one in its complement. In the slightly subcritical regime, we prove the existence of concentrating positive and nodal solutions. Moreover, depending on the geometry of Ω, we establish multiplicity of positive solutions. Finally, in the critical case, we show the existence of a blow-up positive solution when Ω has nontrivial topology. Our proofs rely on a Lyapunov-Schmidt reduction strategy which in these problems turns out to be remarkably simple. We take this opportunity to highlight certain aspects of the method that are often overlooked and present it in a more accessible and detailed manner for nonexperts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信