Korn type inequalities for objective structures

IF 2.3 1区 数学 Q1 MATHEMATICS
Bernd Schmidt, Martin Steinbach
{"title":"Korn type inequalities for objective structures","authors":"Bernd Schmidt,&nbsp;Martin Steinbach","doi":"10.1016/j.matpur.2025.103779","DOIUrl":null,"url":null,"abstract":"<div><div>We establish discrete Korn type inequalities for particle systems within the general class of objective structures that represents a far reaching generalization of crystal lattice structures. For space filling configurations whose symmetry group is a general space group we obtain a full discrete Korn inequality. For systems with non-trivial codimension our results provide an intrinsic rigidity estimate within the extended dimensions of the structure. As their continuum counterparts in elasticity theory, such estimates are at the core of energy estimates and, hence, a stability analysis for a wide class of atomistic particle systems.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103779"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001230","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish discrete Korn type inequalities for particle systems within the general class of objective structures that represents a far reaching generalization of crystal lattice structures. For space filling configurations whose symmetry group is a general space group we obtain a full discrete Korn inequality. For systems with non-trivial codimension our results provide an intrinsic rigidity estimate within the extended dimensions of the structure. As their continuum counterparts in elasticity theory, such estimates are at the core of energy estimates and, hence, a stability analysis for a wide class of atomistic particle systems.
客观结构的Korn型不等式
我们建立离散Korn型不等式的粒子系统在一般类的客观结构,代表了深远的推广晶体晶格结构。对于对称群为一般空间群的空间填充构型,我们得到了一个完整的离散Korn不等式。对于具有非平凡协维的系统,我们的结果提供了结构扩展尺寸内的固有刚度估计。就像弹性理论中连续介质的对应物一样,这种估计是能量估计的核心,因此也是对广泛的原子粒子系统进行稳定性分析的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信