线性时间周期抛物型系统主特征值的渐近与全局分析

IF 2.3 1区 数学 Q1 MATHEMATICS
Shuang Liu
{"title":"线性时间周期抛物型系统主特征值的渐近与全局分析","authors":"Shuang Liu","doi":"10.1016/j.matpur.2025.103781","DOIUrl":null,"url":null,"abstract":"<div><div>The paper is concerned with the effects of the spatio-temporal heterogeneity on the principal eigenvalues of some linear time-periodic parabolic systems. Various asymptotic behaviors of the principal eigenvalue and its monotonicity, as a function of the diffusion rate and frequency, are derived. In particular, some singular behaviors of the principal eigenvalues are characterized when both the diffusion rate and frequency approach zero, with some scalar time-periodic Hamilton-Jacobi equation as the limiting equation. Furthermore, we completely classify the topological structures of the level sets for the principal eigenvalues in the plane of the diffusion rate and frequency. Our results not only generalize the findings in <span><span>[28]</span></span> for scalar periodic-parabolic operators, but also reveal more rich global information, for time-periodic parabolic systems, on the dependence of the principal eigenvalues upon the spatio-temporal heterogeneity.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103781"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic and global analysis of principal eigenvalues for linear time-periodic parabolic systems\",\"authors\":\"Shuang Liu\",\"doi\":\"10.1016/j.matpur.2025.103781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper is concerned with the effects of the spatio-temporal heterogeneity on the principal eigenvalues of some linear time-periodic parabolic systems. Various asymptotic behaviors of the principal eigenvalue and its monotonicity, as a function of the diffusion rate and frequency, are derived. In particular, some singular behaviors of the principal eigenvalues are characterized when both the diffusion rate and frequency approach zero, with some scalar time-periodic Hamilton-Jacobi equation as the limiting equation. Furthermore, we completely classify the topological structures of the level sets for the principal eigenvalues in the plane of the diffusion rate and frequency. Our results not only generalize the findings in <span><span>[28]</span></span> for scalar periodic-parabolic operators, but also reveal more rich global information, for time-periodic parabolic systems, on the dependence of the principal eigenvalues upon the spatio-temporal heterogeneity.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"203 \",\"pages\":\"Article 103781\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001254\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001254","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类线性时间周期抛物型系统的时空异质性对其主特征值的影响。导出了主特征值及其单调性作为扩散速率和频率的函数的各种渐近性质。特别地,当扩散速率和频率都趋近于零时,用标量时间周期Hamilton-Jacobi方程作为极限方程,刻画了主特征值的奇异行为。进一步,我们对扩散速率和频率平面上主特征值的水平集的拓扑结构进行了完全分类。我们的结果不仅推广了[28]中关于标量周期抛物算子的发现,而且还揭示了更多关于时间周期抛物系统的主特征值对时空异质性的依赖的丰富的全局信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic and global analysis of principal eigenvalues for linear time-periodic parabolic systems
The paper is concerned with the effects of the spatio-temporal heterogeneity on the principal eigenvalues of some linear time-periodic parabolic systems. Various asymptotic behaviors of the principal eigenvalue and its monotonicity, as a function of the diffusion rate and frequency, are derived. In particular, some singular behaviors of the principal eigenvalues are characterized when both the diffusion rate and frequency approach zero, with some scalar time-periodic Hamilton-Jacobi equation as the limiting equation. Furthermore, we completely classify the topological structures of the level sets for the principal eigenvalues in the plane of the diffusion rate and frequency. Our results not only generalize the findings in [28] for scalar periodic-parabolic operators, but also reveal more rich global information, for time-periodic parabolic systems, on the dependence of the principal eigenvalues upon the spatio-temporal heterogeneity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信