{"title":"线性时间周期抛物型系统主特征值的渐近与全局分析","authors":"Shuang Liu","doi":"10.1016/j.matpur.2025.103781","DOIUrl":null,"url":null,"abstract":"<div><div>The paper is concerned with the effects of the spatio-temporal heterogeneity on the principal eigenvalues of some linear time-periodic parabolic systems. Various asymptotic behaviors of the principal eigenvalue and its monotonicity, as a function of the diffusion rate and frequency, are derived. In particular, some singular behaviors of the principal eigenvalues are characterized when both the diffusion rate and frequency approach zero, with some scalar time-periodic Hamilton-Jacobi equation as the limiting equation. Furthermore, we completely classify the topological structures of the level sets for the principal eigenvalues in the plane of the diffusion rate and frequency. Our results not only generalize the findings in <span><span>[28]</span></span> for scalar periodic-parabolic operators, but also reveal more rich global information, for time-periodic parabolic systems, on the dependence of the principal eigenvalues upon the spatio-temporal heterogeneity.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103781"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic and global analysis of principal eigenvalues for linear time-periodic parabolic systems\",\"authors\":\"Shuang Liu\",\"doi\":\"10.1016/j.matpur.2025.103781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper is concerned with the effects of the spatio-temporal heterogeneity on the principal eigenvalues of some linear time-periodic parabolic systems. Various asymptotic behaviors of the principal eigenvalue and its monotonicity, as a function of the diffusion rate and frequency, are derived. In particular, some singular behaviors of the principal eigenvalues are characterized when both the diffusion rate and frequency approach zero, with some scalar time-periodic Hamilton-Jacobi equation as the limiting equation. Furthermore, we completely classify the topological structures of the level sets for the principal eigenvalues in the plane of the diffusion rate and frequency. Our results not only generalize the findings in <span><span>[28]</span></span> for scalar periodic-parabolic operators, but also reveal more rich global information, for time-periodic parabolic systems, on the dependence of the principal eigenvalues upon the spatio-temporal heterogeneity.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"203 \",\"pages\":\"Article 103781\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001254\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001254","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic and global analysis of principal eigenvalues for linear time-periodic parabolic systems
The paper is concerned with the effects of the spatio-temporal heterogeneity on the principal eigenvalues of some linear time-periodic parabolic systems. Various asymptotic behaviors of the principal eigenvalue and its monotonicity, as a function of the diffusion rate and frequency, are derived. In particular, some singular behaviors of the principal eigenvalues are characterized when both the diffusion rate and frequency approach zero, with some scalar time-periodic Hamilton-Jacobi equation as the limiting equation. Furthermore, we completely classify the topological structures of the level sets for the principal eigenvalues in the plane of the diffusion rate and frequency. Our results not only generalize the findings in [28] for scalar periodic-parabolic operators, but also reveal more rich global information, for time-periodic parabolic systems, on the dependence of the principal eigenvalues upon the spatio-temporal heterogeneity.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.