Global regularity of integral 2-varifolds with square integrable mean curvature

IF 2.3 1区 数学 Q1 MATHEMATICS
Fabian Rupp , Christian Scharrer
{"title":"Global regularity of integral 2-varifolds with square integrable mean curvature","authors":"Fabian Rupp ,&nbsp;Christian Scharrer","doi":"10.1016/j.matpur.2025.103797","DOIUrl":null,"url":null,"abstract":"<div><div>We provide sharp sufficient criteria for an integral 2-varifold to be induced by a <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msup></math></span>-conformal immersion of a smooth surface. Our approach is based on a fine analysis of the Hausdorff density for 2-varifolds with critical integrability of the mean curvature and a recent local regularity result by Bi–Zhou. In codimension one, there are only three possible density values below 2, each of which can be attained with equality in the Li–Yau inequality for the Willmore functional by the unit sphere, the double bubble, and the triple bubble. We show that below an optimal threshold for the Willmore energy, a varifold induced by a current without boundary is in fact a curvature varifold with a uniform bound on its second fundamental form. Consequently, the minimization of the Willmore functional in the class of curvature varifolds with prescribed even Euler characteristic provides smooth solutions for the Willmore problem. In particular, the “ambient” varifold approach and the “parametric” approach are equivalent for minimizing the Willmore energy.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103797"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001412","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide sharp sufficient criteria for an integral 2-varifold to be induced by a W2,2-conformal immersion of a smooth surface. Our approach is based on a fine analysis of the Hausdorff density for 2-varifolds with critical integrability of the mean curvature and a recent local regularity result by Bi–Zhou. In codimension one, there are only three possible density values below 2, each of which can be attained with equality in the Li–Yau inequality for the Willmore functional by the unit sphere, the double bubble, and the triple bubble. We show that below an optimal threshold for the Willmore energy, a varifold induced by a current without boundary is in fact a curvature varifold with a uniform bound on its second fundamental form. Consequently, the minimization of the Willmore functional in the class of curvature varifolds with prescribed even Euler characteristic provides smooth solutions for the Willmore problem. In particular, the “ambient” varifold approach and the “parametric” approach are equivalent for minimizing the Willmore energy.
平均曲率平方可积的积分2-变量的全局正则性
我们提供了由光滑表面的w2,2 -保形浸没诱导出的积分2-变形的充分准则。我们的方法是基于对具有平均曲率临界可积性的2-变量的Hausdorff密度的精细分析和Bi-Zhou最近的局部正则性结果。在余维1中,小于2的密度值只有三种可能,每一种密度值都可以通过单位球、双泡和三重泡在Willmore泛函的Li-Yau不等式中得到。我们证明了在Willmore能量的最佳阈值以下,由无边界电流诱导的变量实际上是在其第二基本形式上具有均匀边界的曲率变量。因此,在具有规定的偶欧拉特征的曲率变分类中,Willmore泛函的最小化为Willmore问题提供了光滑解。特别是,“环境”变形方法和“参数”方法对于最小化Willmore能量是等效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信