{"title":"Global regularity of integral 2-varifolds with square integrable mean curvature","authors":"Fabian Rupp , Christian Scharrer","doi":"10.1016/j.matpur.2025.103797","DOIUrl":null,"url":null,"abstract":"<div><div>We provide sharp sufficient criteria for an integral 2-varifold to be induced by a <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msup></math></span>-conformal immersion of a smooth surface. Our approach is based on a fine analysis of the Hausdorff density for 2-varifolds with critical integrability of the mean curvature and a recent local regularity result by Bi–Zhou. In codimension one, there are only three possible density values below 2, each of which can be attained with equality in the Li–Yau inequality for the Willmore functional by the unit sphere, the double bubble, and the triple bubble. We show that below an optimal threshold for the Willmore energy, a varifold induced by a current without boundary is in fact a curvature varifold with a uniform bound on its second fundamental form. Consequently, the minimization of the Willmore functional in the class of curvature varifolds with prescribed even Euler characteristic provides smooth solutions for the Willmore problem. In particular, the “ambient” varifold approach and the “parametric” approach are equivalent for minimizing the Willmore energy.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103797"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001412","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We provide sharp sufficient criteria for an integral 2-varifold to be induced by a -conformal immersion of a smooth surface. Our approach is based on a fine analysis of the Hausdorff density for 2-varifolds with critical integrability of the mean curvature and a recent local regularity result by Bi–Zhou. In codimension one, there are only three possible density values below 2, each of which can be attained with equality in the Li–Yau inequality for the Willmore functional by the unit sphere, the double bubble, and the triple bubble. We show that below an optimal threshold for the Willmore energy, a varifold induced by a current without boundary is in fact a curvature varifold with a uniform bound on its second fundamental form. Consequently, the minimization of the Willmore functional in the class of curvature varifolds with prescribed even Euler characteristic provides smooth solutions for the Willmore problem. In particular, the “ambient” varifold approach and the “parametric” approach are equivalent for minimizing the Willmore energy.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.