Francisco Gancedo , Eduardo García-Juárez , Neel Patel , Robert M. Strain
{"title":"On nonlinear stability of Muskat bubbles","authors":"Francisco Gancedo , Eduardo García-Juárez , Neel Patel , Robert M. Strain","doi":"10.1016/j.matpur.2025.103664","DOIUrl":"10.1016/j.matpur.2025.103664","url":null,"abstract":"<div><div>In this paper we consider gravity-capillarity Muskat bubbles in 2D. We obtain a new approach to improve our result in <span><span>[1]</span></span>. Due to a new bubble-adapted formulation, the improvement is twofold. We significantly condense the proof and we now obtain the global well-posedness result for Muskat bubbles in critical regularity.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"194 ","pages":"Article 103664"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of weak solutions to a model of pressureless viscous flow driven by nonlocal attraction–repulsion","authors":"Piotr B. Mucha , Maja Szlenk , Ewelina Zatorska","doi":"10.1016/j.matpur.2025.103671","DOIUrl":"10.1016/j.matpur.2025.103671","url":null,"abstract":"<div><div>We analyze the pressureless Navier-Stokes system with nonlocal attraction–repulsion forces. Such systems appear in the context of models of collective behaviour. We prove the existence of weak solutions on the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> in the case of density-dependent degenerate viscosity. For the nonlocal term it is assumed that the interaction kernel has the quadratic growth at infinity and almost quadratic singularity at zero. Under these assumptions, we derive the analog of the Bresch–Desjardins and Mellet–Vasseur estimates for the nonlocal system. In particular, we are able to adapt the approach of Vasseur and Yu <span><span>[37]</span></span>, <span><span>[36]</span></span> to construct a weak solution.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"195 ","pages":"Article 103671"},"PeriodicalIF":2.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143155109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Infinitesimal conformal restriction and unitarizing measures for Virasoro algebra","authors":"Maria Gordina , Wei Qian , Yilin Wang","doi":"10.1016/j.matpur.2025.103669","DOIUrl":"10.1016/j.matpur.2025.103669","url":null,"abstract":"<div><div>We use the SLE<sub><em>κ</em></sub> loop measure to construct a natural representation of the Virasoro algebra of central charge <span><math><mi>c</mi><mo>=</mo><mi>c</mi><mo>(</mo><mi>κ</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span>. In particular, we introduce a non-degenerate bilinear Hermitian form (and non positive-definite) using the SLE loop measure and show that the representation is indefinite unitary. Our proof relies on the infinitesimal conformal restriction property of the SLE loop measure.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"195 ","pages":"Article 103669"},"PeriodicalIF":2.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143155110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-linear operator-valued elliptic flows with application to quantum field theory","authors":"Jean-Bernard Bru , Nathan Metraud","doi":"10.1016/j.matpur.2025.103657","DOIUrl":"10.1016/j.matpur.2025.103657","url":null,"abstract":"<div><div>Differential equations on spaces of operators are very little developed in Mathematics, being in general very challenging. Here, we study a novel system of such (non-linear) differential equations. We show it has a unique solution for all times, for instance in the Schatten norm topology. This system presents remarkable ellipticity properties that turn out to be crucial for the study of the infinite-time limit of its solution, which is proven under relatively weak, albeit probably not necessary, hypotheses on the initial data. This system of differential equations is the elliptic counterpart of an hyperbolic flow applied to quantum field theory to diagonalize Hamiltonians that are quadratic in the bosonic field. In a similar way, this elliptic flow, in particular its asymptotics, has application in quantum field theory: it can be used to diagonalize Hamiltonians that are quadratic in the fermionic field while giving new explicit expressions and properties of these pivotal Hamiltonians of quantum field theory and quantum statistical mechanics.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"195 ","pages":"Article 103657"},"PeriodicalIF":2.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143155106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A one-sided two phase Bernoulli free boundary problem","authors":"Lorenzo Ferreri , Bozhidar Velichkov","doi":"10.1016/j.matpur.2025.103659","DOIUrl":"10.1016/j.matpur.2025.103659","url":null,"abstract":"<div><div>We study a two-phase free boundary problem in which the two-phases satisfy an impenetrability condition. Precisely, we have two ordered positive functions, which are harmonic in their supports, satisfy a Bernoulli condition on the one-phase part of the free boundary and a transmission condition on the collapsed part of the free boundary. For this two-membrane type problem, we prove an epsilon-regularity theorem with sharp modulus of continuity. Precisely, we show that at flat points each of the two boundaries is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> regular surface and that the remaining singular set has Hausdorff dimension at most <span><math><mi>N</mi><mo>−</mo><mn>5</mn></math></span>, where <em>N</em> is the dimension of the space.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"195 ","pages":"Article 103659"},"PeriodicalIF":2.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143155107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perturbed block Toeplitz matrices and the non-Hermitian skin effect in dimer systems of subwavelength resonators","authors":"Habib Ammari , Silvio Barandun , Ping Liu","doi":"10.1016/j.matpur.2025.103658","DOIUrl":"10.1016/j.matpur.2025.103658","url":null,"abstract":"<div><div>The aim of this paper is fourfold: (i) to obtain explicit formulas for the eigenpairs of perturbed tridiagonal block Toeplitz matrices; (ii) to make use of such formulas in order to provide a mathematical justification of the non-Hermitian skin effect in dimer systems of subwavelength resonators by proving the condensation of the system's bulk eigenmodes at one of the edges of the system; (iii) to show the topological origin of the non-Hermitian skin effect for dimer systems and (iv) to prove localisation of the interface modes between two dimer structures with non-Hermitian gauge potentials of opposite signs based on new estimates of the decay of the entries of the eigenvectors of block matrices with mirrored blocks.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"195 ","pages":"Article 103658"},"PeriodicalIF":2.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143155108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gung-Min Gie , James P. Kelliher , Anna L. Mazzucato
{"title":"The 3D Euler equations with inflow, outflow and vorticity boundary conditions","authors":"Gung-Min Gie , James P. Kelliher , Anna L. Mazzucato","doi":"10.1016/j.matpur.2024.103628","DOIUrl":"10.1016/j.matpur.2024.103628","url":null,"abstract":"<div><div>The 3D incompressible Euler equations in a bounded domain are most often supplemented with impermeable boundary conditions, which constrain the fluid to neither enter nor leave the domain. We establish well-posedness with inflow, outflow of velocity when either the full value of the velocity is specified on inflow, or only the normal component is specified along with the vorticity (and an additional constraint). We derive compatibility conditions to obtain regularity in a Hölder space with prescribed arbitrary index, and allow multiply connected domains. Our results apply as well to impermeable boundaries, establishing higher regularity of solutions in Hölder spaces.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"193 ","pages":"Article 103628"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A geometric characterization of toric singularities","authors":"Joaquin Moraga , Roberto Svaldi","doi":"10.1016/j.matpur.2024.103620","DOIUrl":"10.1016/j.matpur.2024.103620","url":null,"abstract":"<div><div>Given a projective contraction <span><math><mi>π</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Z</mi></math></span> and a log canonical pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> such that <span><math><mo>−</mo><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>+</mo><mi>B</mi><mo>)</mo></math></span> is nef over a neighborhood of a closed point <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>, one can define an invariant, the complexity of <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> over <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>, comparing the dimension of <em>X</em> and the relative Picard number of <span><math><mi>X</mi><mo>/</mo><mi>Z</mi></math></span> with the sum of the coefficients of those components of <em>B</em> intersecting the fiber over <em>z</em>. We prove that, in the hypotheses above, the complexity of the log pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> over <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span> is non-negative and that when it is zero then <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>⌊</mo><mi>B</mi><mo>⌋</mo><mo>)</mo><mo>→</mo><mi>Z</mi></math></span> is formally isomorphic to a morphism of toric varieties around <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>. In particular, considering the case when <em>π</em> is the identity morphism, we get a geometric characterization of singularities that are formally isomorphic to toric singularities, thus resolving a conjecture due to Shokurov.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"195 ","pages":"Article 103620"},"PeriodicalIF":2.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143155111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A mean curvature flow arising in adversarial training","authors":"Leon Bungert , Tim Laux , Kerrek Stinson","doi":"10.1016/j.matpur.2024.103625","DOIUrl":"10.1016/j.matpur.2024.103625","url":null,"abstract":"<div><div>We connect adversarial training for binary classification to a geometric evolution equation for the decision boundary. Relying on a perspective that recasts adversarial training as a regularization problem, we introduce a modified training scheme that constitutes a minimizing movements scheme for a nonlocal perimeter functional. We prove that the scheme is monotone and consistent as the adversarial budget vanishes and the perimeter localizes, and as a consequence we rigorously show that the scheme approximates a weighted mean curvature flow. This highlights that the efficacy of adversarial training may be due to locally minimizing the length of the decision boundary. In our analysis, we introduce a variety of tools for working with the subdifferential of a supremal-type nonlocal total variation and its regularity properties.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"192 ","pages":"Article 103625"},"PeriodicalIF":2.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charles Bertucci , Jean-Michel Lasry , Pierre-Louis Lions
{"title":"A spectral dominance approach to large random matrices: Part II","authors":"Charles Bertucci , Jean-Michel Lasry , Pierre-Louis Lions","doi":"10.1016/j.matpur.2024.103630","DOIUrl":"10.1016/j.matpur.2024.103630","url":null,"abstract":"<div><div>This paper is the second of a series devoted to the study of the dynamics of the spectrum of large random matrices. We precise and extend some results of the first part. We study general extensions of the partial differential equation arising to characterize the limit spectral measure of the Dyson Brownian motion. We provide a regularizing result for those generalizations. We also show that several results of part I extend to cases in which there is no spectral dominance property. We then provide several modeling extensions of such models as well as several identities for the Dyson Brownian motion.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"192 ","pages":"Article 103630"},"PeriodicalIF":2.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}