Journal de Mathematiques Pures et Appliquees最新文献

筛选
英文 中文
Self-interacting approximation to McKean–Vlasov long-time limit: A Markov chain Monte Carlo method McKean-Vlasov时间极限的自相互作用逼近:一种马尔可夫链蒙特卡罗方法
IF 2.3 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-08-28 DOI: 10.1016/j.matpur.2025.103782
Kai Du , Zhenjie Ren , Florin Suciu , Songbo Wang
{"title":"Self-interacting approximation to McKean–Vlasov long-time limit: A Markov chain Monte Carlo method","authors":"Kai Du ,&nbsp;Zhenjie Ren ,&nbsp;Florin Suciu ,&nbsp;Songbo Wang","doi":"10.1016/j.matpur.2025.103782","DOIUrl":"10.1016/j.matpur.2025.103782","url":null,"abstract":"<div><div>For a certain class of McKean–Vlasov processes, we introduce proxy processes that substitute the mean-field interaction with self-interaction, employing a weighted occupation measure. Our study encompasses two key achievements. First, we demonstrate the ergodicity of the self-interacting dynamics, under broad conditions, by applying the reflection coupling method. Second, in scenarios where the drifts are negative intrinsic gradients of convex mean-field potential functionals, we use entropy and functional inequalities to demonstrate that the stationary measures of the self-interacting processes approximate the invariant measures of the corresponding McKean–Vlasov processes. As an application, we show how to learn the optimal weights of a two-layer neural network by training a single neuron.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103782"},"PeriodicalIF":2.3,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145094980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On mean field games in infinite dimension 无限维的平均场对策
IF 2.3 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-08-28 DOI: 10.1016/j.matpur.2025.103780
Salvatore Federico , Fausto Gozzi , Andrzej Święch
{"title":"On mean field games in infinite dimension","authors":"Salvatore Federico ,&nbsp;Fausto Gozzi ,&nbsp;Andrzej Święch","doi":"10.1016/j.matpur.2025.103780","DOIUrl":"10.1016/j.matpur.2025.103780","url":null,"abstract":"<div><div>We study a Mean Field Games (MFG) system in a real, separable infinite dimensional Hilbert space. The system consists of a second order parabolic type equation, called Hamilton-Jacobi-Bellman <span><span>(<strong>HJB</strong>)</span></span> equation in the paper, coupled with a nonlinear Fokker-Planck <span><span>(<strong>FP</strong>)</span></span> equation. Both equations contain a Kolmogorov operator. Solutions to the HJB equation are interpreted in the mild solution sense and solutions to the FP equation are interpreted in an appropriate weak sense. We prove well-posedness of the considered MFG system under certain conditions. The existence of a solution to the MFG system is proved using Tikhonov's fixed point theorem in a proper space. Uniqueness of solutions is obtained under typical separability and Lasry-Lions type monotonicity conditions.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103780"},"PeriodicalIF":2.3,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145010528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-uniqueness of parabolic solutions for advection-diffusion equation 平流扩散方程抛物型解的非唯一性
IF 2.3 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-07-22 DOI: 10.1016/j.matpur.2025.103777
Thérèse Moerschell , Massimo Sorella
{"title":"Non-uniqueness of parabolic solutions for advection-diffusion equation","authors":"Thérèse Moerschell ,&nbsp;Massimo Sorella","doi":"10.1016/j.matpur.2025.103777","DOIUrl":"10.1016/j.matpur.2025.103777","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We present a novel example of a divergence–free velocity field &lt;span&gt;&lt;math&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; arbitrary but fixed which leads to non-unique solutions of advection–diffusion in the class &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; while satisfying the local energy inequality. This result complements the known uniqueness result of bounded solutions for divergence-free and &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; integrable velocity fields. Additionally, we also prove the necessity of time integrability of the velocity field for the uniqueness result. More precisely, we construct another divergence–free velocity field &lt;span&gt;&lt;math&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, for &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; fixed, but arbitrary, with non–unique aforementioned solutions. Our contribution closes the gap between the regime of uniqueness and non-uniqueness in this context. Previously, it was shown with the convex integration technique that for &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; divergence–free velocity fields &lt;span&gt;&lt;math&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt; could lead to non–unique solutions in the space &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103777"},"PeriodicalIF":2.3,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144738741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted Lp → Lq-boundedness of commutators and paraproducts in the Bloom setting 加权Lp → Bloom设定下换向子和副积的lq有界性
IF 2.3 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-07-21 DOI: 10.1016/j.matpur.2025.103772
Timo S. Hänninen , Emiel Lorist , Jaakko Sinko
{"title":"Weighted Lp → Lq-boundedness of commutators and paraproducts in the Bloom setting","authors":"Timo S. Hänninen ,&nbsp;Emiel Lorist ,&nbsp;Jaakko Sinko","doi":"10.1016/j.matpur.2025.103772","DOIUrl":"10.1016/j.matpur.2025.103772","url":null,"abstract":"&lt;div&gt;&lt;div&gt;As our main result, we supply the missing characterization of the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; boundedness of the commutator of a non-degenerate Calderón–Zygmund operator &lt;em&gt;T&lt;/em&gt; and pointwise multiplication by &lt;em&gt;b&lt;/em&gt; for exponents &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and Muckenhoupt weights &lt;span&gt;&lt;math&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Namely, the commutator &lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is bounded if and only if &lt;em&gt;b&lt;/em&gt; satisfies the following new, cancellative condition:&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;#&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;#&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the weighted sharp maximal function defined by&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;#&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munder&gt;&lt;mi&gt;sup&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;munder&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; and &lt;em&gt;ν&lt;/em&gt; is the Bloom weight defined by &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;.&lt;/div&gt;&lt;div&gt;In the unweighted case &lt;span&gt;&lt;math&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, by a result of Hytönen the boundedness of the commutator &lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is, after factoring out constants, characterized by the boundedness","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103772"},"PeriodicalIF":2.3,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144860693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong c-concavity and stability in optimal transport 强c-凹凸性和最优输运的稳定性
IF 2.3 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-07-21 DOI: 10.1016/j.matpur.2025.103773
Anatole Gallouët , Quentin Mérigot , Boris Thibert
{"title":"Strong c-concavity and stability in optimal transport","authors":"Anatole Gallouët ,&nbsp;Quentin Mérigot ,&nbsp;Boris Thibert","doi":"10.1016/j.matpur.2025.103773","DOIUrl":"10.1016/j.matpur.2025.103773","url":null,"abstract":"<div><div>The stability of solutions to optimal transport problems under variation of the measures is fundamental from a mathematical viewpoint: it is closely related to the convergence of numerical approaches to solve optimal transport problems and justifies many of the applications of optimal transport. In this article, we introduce the notion of strong <em>c</em>-concavity, and we show that it plays an important role for proving stability results in optimal transport for general cost functions <em>c</em>. We then introduce a differential criterion for proving that a function is strongly <em>c</em>-concave, under an hypothesis on the cost introduced originally by Ma-Trudinger-Wang for establishing regularity of optimal transport maps. Finally, we provide two examples where this stability result can be applied, for cost functions taking value +∞ on the sphere: the reflector problem and the Gaussian curvature measure prescription problem.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103773"},"PeriodicalIF":2.3,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local interpolation techniques for higher-order singular perturbations of non-convex functionals: Free-discontinuity problems 非凸泛函高阶奇异摄动的局部插值技术:自由不连续问题
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-07-21 DOI: 10.1016/j.matpur.2025.103776
Margherita Solci
{"title":"Local interpolation techniques for higher-order singular perturbations of non-convex functionals: Free-discontinuity problems","authors":"Margherita Solci","doi":"10.1016/j.matpur.2025.103776","DOIUrl":"10.1016/j.matpur.2025.103776","url":null,"abstract":"<div><div>We develop a general approach, using local interpolation inequalities, to non-convex integral functionals depending on the gradient with a singular perturbation by derivatives of order <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. When applied to functionals giving rise to free-discontinuity energies, such methods permit to change boundary values for derivatives up to order <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span> in problems defining density functions for the jump part, thus allowing to prove optimal-profile formulas, and to deduce compactness and lower bounds. As an application, we prove that for <em>k</em>-th order perturbations of energies depending on the gradient behaving as a constant at infinity, the jump energy density is a constant <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> times the <em>k</em>-th root of the jump size. The result is first proved for truncated quadratic energy densities and in the one-dimensional case, from which the general higher-dimensional case can be obtained by slicing techniques. A wide class of non-convex energies can be studied as an envelope of these particular ones. Finally, we remark that an approximation of the Mumford–Shah functional can be obtained by letting <em>k</em> tend to infinity. We also derive a new approximation of the Blake-Zisserman functional.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103776"},"PeriodicalIF":2.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The wave function of stabilizer states and the Wehrl conjecture 稳定器状态的波函数与Wehrl猜想
IF 2.3 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-07-21 DOI: 10.1016/j.matpur.2025.103778
Fabio Nicola
{"title":"The wave function of stabilizer states and the Wehrl conjecture","authors":"Fabio Nicola","doi":"10.1016/j.matpur.2025.103778","DOIUrl":"10.1016/j.matpur.2025.103778","url":null,"abstract":"<div><div>We focus on quantum systems represented by a Hilbert space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, where <em>A</em> is a locally compact Abelian group that contains a compact open subgroup. We examine two interconnected issues related to Weyl-Heisenberg operators. First, we provide a complete and elegant solution to the problem of describing the stabilizer states in terms of their wave functions — an issue that arises in quantum information theory. Subsequently, we demonstrate that the stabilizer states are exactly the minimizers of the Wehrl entropy, thereby solving the Wehrl-type entropy conjecture for any such group (in particular, for finite-dimensional vector spaces over non-Archimedean local fields). Additionally, we construct a moduli space for the set of stabilizer states, that is, a parametrization of this set, that endows it with a natural algebraic structure, and we derive a formula for the number of stabilizer states when <em>A</em> is finite. Indeed, these results are novel even for finite Abelian groups.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103778"},"PeriodicalIF":2.3,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144748574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parabolic Lusztig varieties and chromatic symmetric functions 抛物型Lusztig变异体与色对称函数
IF 2.1 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-07-21 DOI: 10.1016/j.matpur.2025.103771
Alex Abreu , Antonio Nigro
{"title":"Parabolic Lusztig varieties and chromatic symmetric functions","authors":"Alex Abreu ,&nbsp;Antonio Nigro","doi":"10.1016/j.matpur.2025.103771","DOIUrl":"10.1016/j.matpur.2025.103771","url":null,"abstract":"<div><div>The characters of Kazhdan–Lusztig elements of the Hecke algebra over <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (and in particular, the chromatic symmetric function of indifference graphs) are completely encoded in the (intersection) cohomology of Lusztig varieties. Considering the forgetful map to some partial flag variety, the decomposition theorem tells us that this cohomology splits as a sum of intersection cohomology groups with coefficients in some local systems of subvarieties of the partial flag variety. We prove that these local systems correspond to representations of subgroups of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. An explicit characterization of such representations would provide a recursive formula for the computation of such characters/chromatic symmetric functions, which could settle Haiman's conjecture about the positivity of the monomial characters of Kazhdan–Lusztig elements and Stanley–Stembridge conjecture about <em>e</em>-positivity of chromatic symmetric function of indifference graphs. We also find a connection between the character of certain homology groups of subvarieties of the partial flag varieties and the Grojnowski–Haiman hybrid basis of the Hecke algebra.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103771"},"PeriodicalIF":2.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144696692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moduli spaces of parabolic bundles over P1 with five marked points P1上带五个标记点的抛物束的模空间
IF 2.3 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-07-21 DOI: 10.1016/j.matpur.2025.103775
Zhi Hu , Pengfei Huang , Runhong Zong
{"title":"Moduli spaces of parabolic bundles over P1 with five marked points","authors":"Zhi Hu ,&nbsp;Pengfei Huang ,&nbsp;Runhong Zong","doi":"10.1016/j.matpur.2025.103775","DOIUrl":"10.1016/j.matpur.2025.103775","url":null,"abstract":"<div><div>This paper considers the moduli spaces/stacks of parabolic bundles (parabolic logarithmic flat bundles and parabolic logarithmic Higgs bundles with given spectrum) of rank 2 and degree 1 over <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> with five marked points. The foliation and stratification structures on these moduli spaces/stacks are investigated. In particular, we confirm Simpson's conjecture for the moduli space of parabolic logarithmic flat bundles with certain non-special weight system.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103775"},"PeriodicalIF":2.3,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feedback stabilization for entropy solutions of a 2 × 2 hyperbolic system of conservation laws at a junction 2 × 2守恒定律双曲系统的熵解的反馈镇定
IF 2.3 1区 数学
Journal de Mathematiques Pures et Appliquees Pub Date : 2025-07-18 DOI: 10.1016/j.matpur.2025.103774
Giuseppe Maria Coclite , Nicola De Nitti , Mauro Garavello , Francesca Marcellini
{"title":"Feedback stabilization for entropy solutions of a 2 × 2 hyperbolic system of conservation laws at a junction","authors":"Giuseppe Maria Coclite ,&nbsp;Nicola De Nitti ,&nbsp;Mauro Garavello ,&nbsp;Francesca Marcellini","doi":"10.1016/j.matpur.2025.103774","DOIUrl":"10.1016/j.matpur.2025.103774","url":null,"abstract":"<div><div>We consider the <em>p</em>-system in Eulerian coordinates on a star-shaped network. Under suitable transmission conditions at the junction and dissipative boundary conditions at the exterior vertices, we show that the entropy solutions of the system are exponentially stabilizable. Our proof extends the strategy by Coron et al. (2017) and is based on a front-tracking algorithm used to construct approximate piecewise constant solutions whose BV norms are controlled through a suitable exponentially-weighted Glimm-type Lyapunov functional.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103774"},"PeriodicalIF":2.3,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144779585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信