环面奇点的几何表征

IF 2.3 1区 数学 Q1 MATHEMATICS
Joaquin Moraga , Roberto Svaldi
{"title":"环面奇点的几何表征","authors":"Joaquin Moraga ,&nbsp;Roberto Svaldi","doi":"10.1016/j.matpur.2024.103620","DOIUrl":null,"url":null,"abstract":"<div><div>Given a projective contraction <span><math><mi>π</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Z</mi></math></span> and a log canonical pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> such that <span><math><mo>−</mo><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>+</mo><mi>B</mi><mo>)</mo></math></span> is nef over a neighborhood of a closed point <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>, one can define an invariant, the complexity of <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> over <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>, comparing the dimension of <em>X</em> and the relative Picard number of <span><math><mi>X</mi><mo>/</mo><mi>Z</mi></math></span> with the sum of the coefficients of those components of <em>B</em> intersecting the fiber over <em>z</em>. We prove that, in the hypotheses above, the complexity of the log pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> over <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span> is non-negative and that when it is zero then <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>⌊</mo><mi>B</mi><mo>⌋</mo><mo>)</mo><mo>→</mo><mi>Z</mi></math></span> is formally isomorphic to a morphism of toric varieties around <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>. In particular, considering the case when <em>π</em> is the identity morphism, we get a geometric characterization of singularities that are formally isomorphic to toric singularities, thus resolving a conjecture due to Shokurov.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"195 ","pages":"Article 103620"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geometric characterization of toric singularities\",\"authors\":\"Joaquin Moraga ,&nbsp;Roberto Svaldi\",\"doi\":\"10.1016/j.matpur.2024.103620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a projective contraction <span><math><mi>π</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Z</mi></math></span> and a log canonical pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> such that <span><math><mo>−</mo><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>+</mo><mi>B</mi><mo>)</mo></math></span> is nef over a neighborhood of a closed point <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>, one can define an invariant, the complexity of <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> over <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>, comparing the dimension of <em>X</em> and the relative Picard number of <span><math><mi>X</mi><mo>/</mo><mi>Z</mi></math></span> with the sum of the coefficients of those components of <em>B</em> intersecting the fiber over <em>z</em>. We prove that, in the hypotheses above, the complexity of the log pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> over <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span> is non-negative and that when it is zero then <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>⌊</mo><mi>B</mi><mo>⌋</mo><mo>)</mo><mo>→</mo><mi>Z</mi></math></span> is formally isomorphic to a morphism of toric varieties around <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>. In particular, considering the case when <em>π</em> is the identity morphism, we get a geometric characterization of singularities that are formally isomorphic to toric singularities, thus resolving a conjecture due to Shokurov.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"195 \",\"pages\":\"Article 103620\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424001181\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424001181","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个射影收缩π:X→Z和一个对数正则对(X,B),使得- (KX+B)在闭点Z∈Z的邻域上是nef,我们可以定义一个不变量,即(X,B)在Z∈Z上的复杂度,将X的维数和X/Z的相对Picard数与B在Z上与纤维相交的那些分量的系数之和进行比较。我们证明,在上面的假设中,对数对(X,B)在z∈z上的复杂度是非负的,当其为零时,则(X,⌊B⌋)→z在形式上同构于z∈z周围的环变体的态射。特别地,考虑π是恒等态射的情况,我们得到了形式上同构于环奇点的奇点的几何刻画,从而解决了一个由Shokurov引起的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geometric characterization of toric singularities
Given a projective contraction π:XZ and a log canonical pair (X,B) such that (KX+B) is nef over a neighborhood of a closed point zZ, one can define an invariant, the complexity of (X,B) over zZ, comparing the dimension of X and the relative Picard number of X/Z with the sum of the coefficients of those components of B intersecting the fiber over z. We prove that, in the hypotheses above, the complexity of the log pair (X,B) over zZ is non-negative and that when it is zero then (X,B)Z is formally isomorphic to a morphism of toric varieties around zZ. In particular, considering the case when π is the identity morphism, we get a geometric characterization of singularities that are formally isomorphic to toric singularities, thus resolving a conjecture due to Shokurov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信