A spectral dominance approach to large random matrices: Part II

IF 2.1 1区 数学 Q1 MATHEMATICS
Charles Bertucci , Jean-Michel Lasry , Pierre-Louis Lions
{"title":"A spectral dominance approach to large random matrices: Part II","authors":"Charles Bertucci ,&nbsp;Jean-Michel Lasry ,&nbsp;Pierre-Louis Lions","doi":"10.1016/j.matpur.2024.103630","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is the second of a series devoted to the study of the dynamics of the spectrum of large random matrices. We precise and extend some results of the first part. We study general extensions of the partial differential equation arising to characterize the limit spectral measure of the Dyson Brownian motion. We provide a regularizing result for those generalizations. We also show that several results of part I extend to cases in which there is no spectral dominance property. We then provide several modeling extensions of such models as well as several identities for the Dyson Brownian motion.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"192 ","pages":"Article 103630"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424001284","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is the second of a series devoted to the study of the dynamics of the spectrum of large random matrices. We precise and extend some results of the first part. We study general extensions of the partial differential equation arising to characterize the limit spectral measure of the Dyson Brownian motion. We provide a regularizing result for those generalizations. We also show that several results of part I extend to cases in which there is no spectral dominance property. We then provide several modeling extensions of such models as well as several identities for the Dyson Brownian motion.
大型随机矩阵的谱支配方法:第二部分
本文是专门研究大型随机矩阵频谱动力学的系列论文之二。我们对第一部分的一些结果进行了精确和扩展。我们研究了为描述戴森布朗运动的极限谱量而产生的偏微分方程的一般扩展。我们为这些一般化提供了正则化结果。我们还证明,第一部分的几个结果可以扩展到不存在谱支配特性的情况。然后,我们提供了此类模型的若干建模扩展以及戴森布朗运动的若干等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信