单侧两相伯努利自由边界问题

IF 2.3 1区 数学 Q1 MATHEMATICS
Lorenzo Ferreri , Bozhidar Velichkov
{"title":"单侧两相伯努利自由边界问题","authors":"Lorenzo Ferreri ,&nbsp;Bozhidar Velichkov","doi":"10.1016/j.matpur.2025.103659","DOIUrl":null,"url":null,"abstract":"<div><div>We study a two-phase free boundary problem in which the two-phases satisfy an impenetrability condition. Precisely, we have two ordered positive functions, which are harmonic in their supports, satisfy a Bernoulli condition on the one-phase part of the free boundary and a transmission condition on the collapsed part of the free boundary. For this two-membrane type problem, we prove an epsilon-regularity theorem with sharp modulus of continuity. Precisely, we show that at flat points each of the two boundaries is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> regular surface and that the remaining singular set has Hausdorff dimension at most <span><math><mi>N</mi><mo>−</mo><mn>5</mn></math></span>, where <em>N</em> is the dimension of the space.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"195 ","pages":"Article 103659"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A one-sided two phase Bernoulli free boundary problem\",\"authors\":\"Lorenzo Ferreri ,&nbsp;Bozhidar Velichkov\",\"doi\":\"10.1016/j.matpur.2025.103659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study a two-phase free boundary problem in which the two-phases satisfy an impenetrability condition. Precisely, we have two ordered positive functions, which are harmonic in their supports, satisfy a Bernoulli condition on the one-phase part of the free boundary and a transmission condition on the collapsed part of the free boundary. For this two-membrane type problem, we prove an epsilon-regularity theorem with sharp modulus of continuity. Precisely, we show that at flat points each of the two boundaries is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> regular surface and that the remaining singular set has Hausdorff dimension at most <span><math><mi>N</mi><mo>−</mo><mn>5</mn></math></span>, where <em>N</em> is the dimension of the space.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"195 \",\"pages\":\"Article 103659\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000030\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000030","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类两相满足不可穿透条件的自由边界问题。确切地说,我们有两个在其支点上是谐波的有序正函数,它们在自由边界的单相部分满足伯努利条件,在自由边界的崩塌部分满足传输条件。对于这类双膜型问题,我们证明了具有连续锐模的ε -正则定理。准确地说,我们证明了在平坦点处,两个边界中的每一个都是C1,12正则曲面,并且剩下的奇异集具有最多N−5的Hausdorff维数,其中N是空间的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A one-sided two phase Bernoulli free boundary problem
We study a two-phase free boundary problem in which the two-phases satisfy an impenetrability condition. Precisely, we have two ordered positive functions, which are harmonic in their supports, satisfy a Bernoulli condition on the one-phase part of the free boundary and a transmission condition on the collapsed part of the free boundary. For this two-membrane type problem, we prove an epsilon-regularity theorem with sharp modulus of continuity. Precisely, we show that at flat points each of the two boundaries is C1,12 regular surface and that the remaining singular set has Hausdorff dimension at most N5, where N is the dimension of the space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信