{"title":"Virasoro代数的无穷小共形限制和统一措施","authors":"Maria Gordina , Wei Qian , Yilin Wang","doi":"10.1016/j.matpur.2025.103669","DOIUrl":null,"url":null,"abstract":"<div><div>We use the SLE<sub><em>κ</em></sub> loop measure to construct a natural representation of the Virasoro algebra of central charge <span><math><mi>c</mi><mo>=</mo><mi>c</mi><mo>(</mo><mi>κ</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span>. In particular, we introduce a non-degenerate bilinear Hermitian form (and non positive-definite) using the SLE loop measure and show that the representation is indefinite unitary. Our proof relies on the infinitesimal conformal restriction property of the SLE loop measure.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"195 ","pages":"Article 103669"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitesimal conformal restriction and unitarizing measures for Virasoro algebra\",\"authors\":\"Maria Gordina , Wei Qian , Yilin Wang\",\"doi\":\"10.1016/j.matpur.2025.103669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We use the SLE<sub><em>κ</em></sub> loop measure to construct a natural representation of the Virasoro algebra of central charge <span><math><mi>c</mi><mo>=</mo><mi>c</mi><mo>(</mo><mi>κ</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span>. In particular, we introduce a non-degenerate bilinear Hermitian form (and non positive-definite) using the SLE loop measure and show that the representation is indefinite unitary. Our proof relies on the infinitesimal conformal restriction property of the SLE loop measure.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"195 \",\"pages\":\"Article 103669\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000133\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000133","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Infinitesimal conformal restriction and unitarizing measures for Virasoro algebra
We use the SLEκ loop measure to construct a natural representation of the Virasoro algebra of central charge . In particular, we introduce a non-degenerate bilinear Hermitian form (and non positive-definite) using the SLE loop measure and show that the representation is indefinite unitary. Our proof relies on the infinitesimal conformal restriction property of the SLE loop measure.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.