{"title":"A geometric characterization of toric singularities","authors":"Joaquin Moraga , Roberto Svaldi","doi":"10.1016/j.matpur.2024.103620","DOIUrl":null,"url":null,"abstract":"<div><div>Given a projective contraction <span><math><mi>π</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Z</mi></math></span> and a log canonical pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> such that <span><math><mo>−</mo><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>+</mo><mi>B</mi><mo>)</mo></math></span> is nef over a neighborhood of a closed point <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>, one can define an invariant, the complexity of <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> over <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>, comparing the dimension of <em>X</em> and the relative Picard number of <span><math><mi>X</mi><mo>/</mo><mi>Z</mi></math></span> with the sum of the coefficients of those components of <em>B</em> intersecting the fiber over <em>z</em>. We prove that, in the hypotheses above, the complexity of the log pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> over <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span> is non-negative and that when it is zero then <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>⌊</mo><mi>B</mi><mo>⌋</mo><mo>)</mo><mo>→</mo><mi>Z</mi></math></span> is formally isomorphic to a morphism of toric varieties around <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>. In particular, considering the case when <em>π</em> is the identity morphism, we get a geometric characterization of singularities that are formally isomorphic to toric singularities, thus resolving a conjecture due to Shokurov.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"195 ","pages":"Article 103620"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424001181","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a projective contraction and a log canonical pair such that is nef over a neighborhood of a closed point , one can define an invariant, the complexity of over , comparing the dimension of X and the relative Picard number of with the sum of the coefficients of those components of B intersecting the fiber over z. We prove that, in the hypotheses above, the complexity of the log pair over is non-negative and that when it is zero then is formally isomorphic to a morphism of toric varieties around . In particular, considering the case when π is the identity morphism, we get a geometric characterization of singularities that are formally isomorphic to toric singularities, thus resolving a conjecture due to Shokurov.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.