{"title":"对称张量代数产生的辛奇异性","authors":"Baohua Fu , Jie Liu","doi":"10.1016/j.matpur.2025.103794","DOIUrl":null,"url":null,"abstract":"<div><div>The algebra of symmetric tensors <span><math><mi>S</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>≔</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>•</mo></mrow></msup><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span> of a projective manifold <em>X</em> leads to a natural dominant affinization morphism<span><span><span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>X</mi><mo>⟶</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>≔</mo><mi>Spec</mi><mspace></mspace><mi>S</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>.</mo></math></span></span></span> It is shown that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is birational if and only if <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is big. We prove that if <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is birational, then <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is a symplectic variety endowed with the Schouten–Nijenhuis bracket if and only if <span><math><mi>P</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is of Fano type, which is the case for smooth projective toric varieties, smooth horospherical varieties with small boundary, and the quintic del Pezzo threefold. These give examples of a distinguished class of conical symplectic varieties, which we call symplectic orbifold cones.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103794"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic singularities arising from algebras of symmetric tensors\",\"authors\":\"Baohua Fu , Jie Liu\",\"doi\":\"10.1016/j.matpur.2025.103794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The algebra of symmetric tensors <span><math><mi>S</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>≔</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>•</mo></mrow></msup><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span> of a projective manifold <em>X</em> leads to a natural dominant affinization morphism<span><span><span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>X</mi><mo>⟶</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>≔</mo><mi>Spec</mi><mspace></mspace><mi>S</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>.</mo></math></span></span></span> It is shown that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is birational if and only if <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is big. We prove that if <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is birational, then <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is a symplectic variety endowed with the Schouten–Nijenhuis bracket if and only if <span><math><mi>P</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is of Fano type, which is the case for smooth projective toric varieties, smooth horospherical varieties with small boundary, and the quintic del Pezzo threefold. These give examples of a distinguished class of conical symplectic varieties, which we call symplectic orbifold cones.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103794\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001382\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001382","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对对称张量S(X)的代数,其中对投影流形X的H0(X,S•TX)是一个自然优势仿射态φX:T X ZX是一个自然优势仿射态。证明了φX当且仅当TX较大时是两位数的。证明了φX是双分型的,则当且仅当PTX为Fano型时,ZX是赋有Schouten-Nijenhuis括弧的简型变种,对于光滑投影环型变种、小边界光滑全球型变种和五次del Pezzo三重型都是如此。这些给出了一类特殊的圆锥辛变异体的例子,我们称之为辛轨道锥。
Symplectic singularities arising from algebras of symmetric tensors
The algebra of symmetric tensors of a projective manifold X leads to a natural dominant affinization morphism It is shown that is birational if and only if is big. We prove that if is birational, then is a symplectic variety endowed with the Schouten–Nijenhuis bracket if and only if is of Fano type, which is the case for smooth projective toric varieties, smooth horospherical varieties with small boundary, and the quintic del Pezzo threefold. These give examples of a distinguished class of conical symplectic varieties, which we call symplectic orbifold cones.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.