对称张量代数产生的辛奇异性

IF 2.3 1区 数学 Q1 MATHEMATICS
Baohua Fu , Jie Liu
{"title":"对称张量代数产生的辛奇异性","authors":"Baohua Fu ,&nbsp;Jie Liu","doi":"10.1016/j.matpur.2025.103794","DOIUrl":null,"url":null,"abstract":"<div><div>The algebra of symmetric tensors <span><math><mi>S</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>≔</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>•</mo></mrow></msup><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span> of a projective manifold <em>X</em> leads to a natural dominant affinization morphism<span><span><span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>X</mi><mo>⟶</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>≔</mo><mi>Spec</mi><mspace></mspace><mi>S</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>.</mo></math></span></span></span> It is shown that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is birational if and only if <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is big. We prove that if <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is birational, then <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is a symplectic variety endowed with the Schouten–Nijenhuis bracket if and only if <span><math><mi>P</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is of Fano type, which is the case for smooth projective toric varieties, smooth horospherical varieties with small boundary, and the quintic del Pezzo threefold. These give examples of a distinguished class of conical symplectic varieties, which we call symplectic orbifold cones.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103794"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic singularities arising from algebras of symmetric tensors\",\"authors\":\"Baohua Fu ,&nbsp;Jie Liu\",\"doi\":\"10.1016/j.matpur.2025.103794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The algebra of symmetric tensors <span><math><mi>S</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>≔</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>•</mo></mrow></msup><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span> of a projective manifold <em>X</em> leads to a natural dominant affinization morphism<span><span><span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>X</mi><mo>⟶</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>≔</mo><mi>Spec</mi><mspace></mspace><mi>S</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>.</mo></math></span></span></span> It is shown that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is birational if and only if <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is big. We prove that if <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is birational, then <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is a symplectic variety endowed with the Schouten–Nijenhuis bracket if and only if <span><math><mi>P</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is of Fano type, which is the case for smooth projective toric varieties, smooth horospherical varieties with small boundary, and the quintic del Pezzo threefold. These give examples of a distinguished class of conical symplectic varieties, which we call symplectic orbifold cones.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103794\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001382\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001382","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对对称张量S(X)的代数,其中对投影流形X的H0(X,S•TX)是一个自然优势仿射态φX:T X ZX是一个自然优势仿射态。证明了φX当且仅当TX较大时是两位数的。证明了φX是双分型的,则当且仅当PTX为Fano型时,ZX是赋有Schouten-Nijenhuis括弧的简型变种,对于光滑投影环型变种、小边界光滑全球型变种和五次del Pezzo三重型都是如此。这些给出了一类特殊的圆锥辛变异体的例子,我们称之为辛轨道锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic singularities arising from algebras of symmetric tensors
The algebra of symmetric tensors S(X)H0(X,STX) of a projective manifold X leads to a natural dominant affinization morphismφX:TXZXSpecS(X). It is shown that φX is birational if and only if TX is big. We prove that if φX is birational, then ZX is a symplectic variety endowed with the Schouten–Nijenhuis bracket if and only if PTX is of Fano type, which is the case for smooth projective toric varieties, smooth horospherical varieties with small boundary, and the quintic del Pezzo threefold. These give examples of a distinguished class of conical symplectic varieties, which we call symplectic orbifold cones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信