{"title":"Keller-Segel系统中信号产生的局部各向异性抑制爆破","authors":"Youshan Tao , Michael Winkler","doi":"10.1016/j.matpur.2025.103795","DOIUrl":null,"url":null,"abstract":"<div><div>In a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>, and with <span><math><mi>D</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>d</mi><mo>></mo><mn>0</mn></math></span>, this manuscript considers the Neumann initial-boundary problem for the Keller-Segel type system<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>D</mi><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>d</mi><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd></mtr></mtable></mrow><mspace></mspace><mo>(</mo><mo>⋆</mo><mo>)</mo></mrow></math></span></span></span> which arises in the modeling for chemotactic movement in the presence of certain anisotropic signal production mechanisms.</div><div>Unlike the classical Keller-Segel model whose solutions may blow up in finite time in high-dimensional domains, this problem is shown to admit a unique global bounded classical solution whenever the difference <span><math><mo>|</mo><mi>D</mi><mo>−</mo><mi>d</mi><mo>|</mo></math></span> is appropriately small. This markedly distinguishes (⋆) from classical Keller-Segel systems for which some solutions are known to blow up in finite time when <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103795"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of blow-up by local anisotropy of signal production in the Keller-Segel system\",\"authors\":\"Youshan Tao , Michael Winkler\",\"doi\":\"10.1016/j.matpur.2025.103795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>, and with <span><math><mi>D</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>d</mi><mo>></mo><mn>0</mn></math></span>, this manuscript considers the Neumann initial-boundary problem for the Keller-Segel type system<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>D</mi><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>d</mi><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd></mtr></mtable></mrow><mspace></mspace><mo>(</mo><mo>⋆</mo><mo>)</mo></mrow></math></span></span></span> which arises in the modeling for chemotactic movement in the presence of certain anisotropic signal production mechanisms.</div><div>Unlike the classical Keller-Segel model whose solutions may blow up in finite time in high-dimensional domains, this problem is shown to admit a unique global bounded classical solution whenever the difference <span><math><mo>|</mo><mi>D</mi><mo>−</mo><mi>d</mi><mo>|</mo></math></span> is appropriately small. This markedly distinguishes (⋆) from classical Keller-Segel systems for which some solutions are known to blow up in finite time when <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103795\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001394\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001394","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在光滑有界域Ω∧Rn, n≤5,并且D>;0和D>;0中,本文考虑了Keller-Segel型系统{ut=DΔu−∇⋅(u∇v),vt=dΔv+∇⋅(u∇v)−v+u,(-)的Neumann初始边界问题,该问题出现在存在某些各向异性信号产生机制的趋化运动建模中。与经典Keller-Segel模型的解在高维域中可能在有限时间内爆炸不同,当差分|D - D |适当小时,该问题承认一个唯一的全局有界经典解。这明显区别于经典的Keller-Segel系统,对于经典的Keller-Segel系统,已知当n≥2时,某些解会在有限时间内爆炸。
Suppression of blow-up by local anisotropy of signal production in the Keller-Segel system
In a smoothly bounded domain , , and with and , this manuscript considers the Neumann initial-boundary problem for the Keller-Segel type system which arises in the modeling for chemotactic movement in the presence of certain anisotropic signal production mechanisms.
Unlike the classical Keller-Segel model whose solutions may blow up in finite time in high-dimensional domains, this problem is shown to admit a unique global bounded classical solution whenever the difference is appropriately small. This markedly distinguishes (⋆) from classical Keller-Segel systems for which some solutions are known to blow up in finite time when .
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.