Suppression of blow-up by local anisotropy of signal production in the Keller-Segel system

IF 2.3 1区 数学 Q1 MATHEMATICS
Youshan Tao , Michael Winkler
{"title":"Suppression of blow-up by local anisotropy of signal production in the Keller-Segel system","authors":"Youshan Tao ,&nbsp;Michael Winkler","doi":"10.1016/j.matpur.2025.103795","DOIUrl":null,"url":null,"abstract":"<div><div>In a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>, and with <span><math><mi>D</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mi>d</mi><mo>&gt;</mo><mn>0</mn></math></span>, this manuscript considers the Neumann initial-boundary problem for the Keller-Segel type system<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>D</mi><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>d</mi><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd></mtr></mtable></mrow><mspace></mspace><mo>(</mo><mo>⋆</mo><mo>)</mo></mrow></math></span></span></span> which arises in the modeling for chemotactic movement in the presence of certain anisotropic signal production mechanisms.</div><div>Unlike the classical Keller-Segel model whose solutions may blow up in finite time in high-dimensional domains, this problem is shown to admit a unique global bounded classical solution whenever the difference <span><math><mo>|</mo><mi>D</mi><mo>−</mo><mi>d</mi><mo>|</mo></math></span> is appropriately small. This markedly distinguishes (⋆) from classical Keller-Segel systems for which some solutions are known to blow up in finite time when <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103795"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001394","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a smoothly bounded domain ΩRn, n5, and with D>0 and d>0, this manuscript considers the Neumann initial-boundary problem for the Keller-Segel type system{ut=DΔu(uv),vt=dΔv+(uv)v+u,() which arises in the modeling for chemotactic movement in the presence of certain anisotropic signal production mechanisms.
Unlike the classical Keller-Segel model whose solutions may blow up in finite time in high-dimensional domains, this problem is shown to admit a unique global bounded classical solution whenever the difference |Dd| is appropriately small. This markedly distinguishes (⋆) from classical Keller-Segel systems for which some solutions are known to blow up in finite time when n2.
Keller-Segel系统中信号产生的局部各向异性抑制爆破
在光滑有界域Ω∧Rn, n≤5,并且D>;0和D>;0中,本文考虑了Keller-Segel型系统{ut=DΔu−∇⋅(u∇v),vt=dΔv+∇⋅(u∇v)−v+u,(-)的Neumann初始边界问题,该问题出现在存在某些各向异性信号产生机制的趋化运动建模中。与经典Keller-Segel模型的解在高维域中可能在有限时间内爆炸不同,当差分|D - D |适当小时,该问题承认一个唯一的全局有界经典解。这明显区别于经典的Keller-Segel系统,对于经典的Keller-Segel系统,已知当n≥2时,某些解会在有限时间内爆炸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信