{"title":"道路-场地反应-扩散模型的Hamilton-Jacobi方法","authors":"Christopher Henderson , King-Yeung Lam","doi":"10.1016/j.matpur.2025.103798","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the road-field reaction-diffusion model introduced by Berestycki, Roquejoffre, and Rossi. By performing a “thin-front” limit, we are able to deduce a Hamilton-Jacobi equation with a suitable effective Hamiltonian on the road that governs the front location of the road-field model. Our main motivation is to apply the theory of strong (flux-limited) viscosity solutions in order to determine a control formulation interpretation of the front location. In view of the ecological meaning of the road-field model, this is natural as it casts the invasion problem as one of finding optimal paths that balance the positive growth rate in the field with the fast diffusion on the road.</div><div>Our main contribution is a nearly complete picture of the behavior on two-road conical domains. When the diffusivities on each road are the same, we show that the propagation speed in each direction in the cone can be computed via those associated with one-road half-space problem. When the diffusivities differ, we show that the speed along the faster road is unchanged, while the speed along the slower road can be enhanced. Along the way we provide a new proof of known results on the one-road half-space problem via our approach.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103798"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hamilton-Jacobi approach to road-field reaction-diffusion models\",\"authors\":\"Christopher Henderson , King-Yeung Lam\",\"doi\":\"10.1016/j.matpur.2025.103798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the road-field reaction-diffusion model introduced by Berestycki, Roquejoffre, and Rossi. By performing a “thin-front” limit, we are able to deduce a Hamilton-Jacobi equation with a suitable effective Hamiltonian on the road that governs the front location of the road-field model. Our main motivation is to apply the theory of strong (flux-limited) viscosity solutions in order to determine a control formulation interpretation of the front location. In view of the ecological meaning of the road-field model, this is natural as it casts the invasion problem as one of finding optimal paths that balance the positive growth rate in the field with the fast diffusion on the road.</div><div>Our main contribution is a nearly complete picture of the behavior on two-road conical domains. When the diffusivities on each road are the same, we show that the propagation speed in each direction in the cone can be computed via those associated with one-road half-space problem. When the diffusivities differ, we show that the speed along the faster road is unchanged, while the speed along the slower road can be enhanced. Along the way we provide a new proof of known results on the one-road half-space problem via our approach.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103798\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001424\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001424","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Hamilton-Jacobi approach to road-field reaction-diffusion models
We consider the road-field reaction-diffusion model introduced by Berestycki, Roquejoffre, and Rossi. By performing a “thin-front” limit, we are able to deduce a Hamilton-Jacobi equation with a suitable effective Hamiltonian on the road that governs the front location of the road-field model. Our main motivation is to apply the theory of strong (flux-limited) viscosity solutions in order to determine a control formulation interpretation of the front location. In view of the ecological meaning of the road-field model, this is natural as it casts the invasion problem as one of finding optimal paths that balance the positive growth rate in the field with the fast diffusion on the road.
Our main contribution is a nearly complete picture of the behavior on two-road conical domains. When the diffusivities on each road are the same, we show that the propagation speed in each direction in the cone can be computed via those associated with one-road half-space problem. When the diffusivities differ, we show that the speed along the faster road is unchanged, while the speed along the slower road can be enhanced. Along the way we provide a new proof of known results on the one-road half-space problem via our approach.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.