On long time behavior of solutions of the Schrödinger-KdV system with and without resonant interactions

IF 2.3 1区 数学 Q1 MATHEMATICS
Deqin Zhou , Felipe Linares
{"title":"On long time behavior of solutions of the Schrödinger-KdV system with and without resonant interactions","authors":"Deqin Zhou ,&nbsp;Felipe Linares","doi":"10.1016/j.matpur.2025.103792","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the long time behavior of the solutions of the coupled Schrödinger-KdV system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>=</mo><mi>α</mi><mi>u</mi><mi>v</mi><mo>+</mo><mi>β</mi><mi>u</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>v</mi><mo>+</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mi>v</mi><mo>+</mo><mi>v</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>v</mi><mo>=</mo><mi>γ</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> We show that global solutions to this system satisfy locally energy decay in a suitable interval, growing unbounded in time, in two situations. In the first case, we regard the parameter vector <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>×</mo><mover><mrow><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow><mo>‾</mo></mover><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> without any size assumption on the initial data in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. In the second one, we consider the parameter vector <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>. In this case, we give a ‘‘smallness” criterion involving the product of the parameter −<em>β</em> and a constant depending on the initial data in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Our results answer positively the open questions raised in F. Linares, A. J. Mendez (2021) <span><span>[18]</span></span>. We use new ideas and different techniques from the latter paper.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103792"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001369","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the long time behavior of the solutions of the coupled Schrödinger-KdV system{itu+x2u=αuv+βu|u|2,(x,t)R×R+,tv+x3v+vxv=γx(|u|2),(x,t)R×R+,(u,v)|t=0=(u0,v0). We show that global solutions to this system satisfy locally energy decay in a suitable interval, growing unbounded in time, in two situations. In the first case, we regard the parameter vector (α,β,γ)R+×R+×R+ without any size assumption on the initial data in H1(R)×H1(R). In the second one, we consider the parameter vector (α,β,γ)R+×R×R+. In this case, we give a ‘‘smallness” criterion involving the product of the parameter −β and a constant depending on the initial data in H1(R)×H1(R). Our results answer positively the open questions raised in F. Linares, A. J. Mendez (2021) [18]. We use new ideas and different techniques from the latter paper.
有和无共振相互作用时Schrödinger-KdV系统解的长时间行为
我们考虑耦合Schrödinger-KdV系统{i∂tu+∂x2u=αuv+βu|u|2,(x,t)∈R×R+,∂tv+∂x3v+v∂xv=γ∂x(|u|2),(x,t)∈R×R+,(u,v)|t=0=(u0,v0)的长时间行为。在两种情况下,我们证明了该系统的全局解在一个适当的区间内满足局部能量衰减,并随时间无界增长。在第一种情况下,我们考虑参数向量(α,β,γ)∈R+×R+,对H1(R)×H1(R)中的初始数据没有任何大小假设。在第二个例子中,我们考虑参数向量(α,β,γ)∈R+×R−×R+。在这种情况下,我们给出了一个“小”准则,涉及参数- β和一个常数的乘积,这取决于H1(R)×H1(R)中的初始数据。我们的研究结果积极地回答了F. Linares, A. J. Mendez (2021) b[18]中提出的开放性问题。我们使用了与前一篇文章不同的新思路和技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信