{"title":"On long time behavior of solutions of the Schrödinger-KdV system with and without resonant interactions","authors":"Deqin Zhou , Felipe Linares","doi":"10.1016/j.matpur.2025.103792","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the long time behavior of the solutions of the coupled Schrödinger-KdV system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>=</mo><mi>α</mi><mi>u</mi><mi>v</mi><mo>+</mo><mi>β</mi><mi>u</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>v</mi><mo>+</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mi>v</mi><mo>+</mo><mi>v</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>v</mi><mo>=</mo><mi>γ</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> We show that global solutions to this system satisfy locally energy decay in a suitable interval, growing unbounded in time, in two situations. In the first case, we regard the parameter vector <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>×</mo><mover><mrow><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow><mo>‾</mo></mover><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> without any size assumption on the initial data in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. In the second one, we consider the parameter vector <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>. In this case, we give a ‘‘smallness” criterion involving the product of the parameter −<em>β</em> and a constant depending on the initial data in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Our results answer positively the open questions raised in F. Linares, A. J. Mendez (2021) <span><span>[18]</span></span>. We use new ideas and different techniques from the latter paper.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103792"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001369","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the long time behavior of the solutions of the coupled Schrödinger-KdV system We show that global solutions to this system satisfy locally energy decay in a suitable interval, growing unbounded in time, in two situations. In the first case, we regard the parameter vector without any size assumption on the initial data in . In the second one, we consider the parameter vector . In this case, we give a ‘‘smallness” criterion involving the product of the parameter −β and a constant depending on the initial data in . Our results answer positively the open questions raised in F. Linares, A. J. Mendez (2021) [18]. We use new ideas and different techniques from the latter paper.
我们考虑耦合Schrödinger-KdV系统{i∂tu+∂x2u=αuv+βu|u|2,(x,t)∈R×R+,∂tv+∂x3v+v∂xv=γ∂x(|u|2),(x,t)∈R×R+,(u,v)|t=0=(u0,v0)的长时间行为。在两种情况下,我们证明了该系统的全局解在一个适当的区间内满足局部能量衰减,并随时间无界增长。在第一种情况下,我们考虑参数向量(α,β,γ)∈R+×R+,对H1(R)×H1(R)中的初始数据没有任何大小假设。在第二个例子中,我们考虑参数向量(α,β,γ)∈R+×R−×R+。在这种情况下,我们给出了一个“小”准则,涉及参数- β和一个常数的乘积,这取决于H1(R)×H1(R)中的初始数据。我们的研究结果积极地回答了F. Linares, A. J. Mendez (2021) b[18]中提出的开放性问题。我们使用了与前一篇文章不同的新思路和技术。
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.