{"title":"Long time classical solutions of quasilinear Klein-Gordon equations with small weakly decaying initial data","authors":"Fei Hou , Huicheng Yin","doi":"10.1016/j.matpur.2025.103803","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that for the quasilinear Klein-Gordon equation with quadratic nonlinearity and sufficiently decaying small initial data, there exists a global smooth solution if the space dimensions <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. When the initial data are of size <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> in the Sobolev space, for the semilinear Klein-Gordon equation satisfying the null condition, the authors in the article (Delort and Fang, 2000 <span><span>[11]</span></span>) prove that the solution exists in time <span><math><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>≥</mo><mi>C</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mi>μ</mi></mrow></msup></mrow></msup></math></span> (<span><math><mi>μ</mi><mo>=</mo><mn>1</mn></math></span> if <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>μ</mi><mo>=</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>). In the present paper, we will focus on the general quasilinear Klein-Gordon equation without the null condition and further show that the existence time of the solution can be improved to <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> if <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>≥</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></msup></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. In addition, for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and any fixed number <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>, if the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm of the initial data with the weight <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> is small, then the solution exists globally and scatters to a free solution. Our arguments are based on the introduction of a new good unknown, the Strichartz estimate, the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm estimate and the resonance analysis.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103803"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001473","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that for the quasilinear Klein-Gordon equation with quadratic nonlinearity and sufficiently decaying small initial data, there exists a global smooth solution if the space dimensions . When the initial data are of size in the Sobolev space, for the semilinear Klein-Gordon equation satisfying the null condition, the authors in the article (Delort and Fang, 2000 [11]) prove that the solution exists in time with ( if , if ). In the present paper, we will focus on the general quasilinear Klein-Gordon equation without the null condition and further show that the existence time of the solution can be improved to if and if . In addition, for and any fixed number , if the weighted norm of the initial data with the weight is small, then the solution exists globally and scatters to a free solution. Our arguments are based on the introduction of a new good unknown, the Strichartz estimate, the weighted -norm estimate and the resonance analysis.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.