Green函数高可积性的Fabes-Stroock方法及Ld漂移下的ABP估计

IF 2.3 1区 数学 Q1 MATHEMATICS
Pilgyu Jung , Kwan Woo
{"title":"Green函数高可积性的Fabes-Stroock方法及Ld漂移下的ABP估计","authors":"Pilgyu Jung ,&nbsp;Kwan Woo","doi":"10.1016/j.matpur.2025.103805","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the higher integrability of Green's functions associated with the second-order elliptic equation <span><math><msup><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msup><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mi>u</mi><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi></math></span> in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, and establish an enhanced version of Aleksandrov's maximum principle. In particular, we consider the drift term <span><math><mi>b</mi><mo>=</mo><mo>(</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> and the source term <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> for some <span><math><mi>p</mi><mo>&lt;</mo><mi>d</mi></math></span>. This provides an alternative and analytic proof of a result by N.V. Krylov (<em>Ann. Probab.</em>, 2021) concerning <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> drifts. The key step involves deriving a Gehring-type inequality for Green's functions by using the Fabes-Stroock approach (<em>Duke Math. J.</em>, 1984).</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103805"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabes-Stroock approach to higher integrability of Green's functions and ABP estimates with Ld drift\",\"authors\":\"Pilgyu Jung ,&nbsp;Kwan Woo\",\"doi\":\"10.1016/j.matpur.2025.103805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the higher integrability of Green's functions associated with the second-order elliptic equation <span><math><msup><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msup><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mi>u</mi><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi></math></span> in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, and establish an enhanced version of Aleksandrov's maximum principle. In particular, we consider the drift term <span><math><mi>b</mi><mo>=</mo><mo>(</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> and the source term <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> for some <span><math><mi>p</mi><mo>&lt;</mo><mi>d</mi></math></span>. This provides an alternative and analytic proof of a result by N.V. Krylov (<em>Ann. Probab.</em>, 2021) concerning <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> drifts. The key step involves deriving a Gehring-type inequality for Green's functions by using the Fabes-Stroock approach (<em>Duke Math. J.</em>, 1984).</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103805\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001497\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001497","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了二阶椭圆方程aijDiju+biDiu=f在有界域Ω∧Rd上的格林函数的高可积性,并建立了Aleksandrov极大原理的增强版本。特别地,我们考虑Ld中的漂移项b=(b1,…,bd)和某些p<;d的源项f∈Lp。这为N.V. Krylov (Ann。Probab。(2021)关于Ld漂移。关键的一步是通过使用Fabes-Stroock方法(杜克数学)推导格林函数的格林型不等式。J。,1984)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabes-Stroock approach to higher integrability of Green's functions and ABP estimates with Ld drift
We explore the higher integrability of Green's functions associated with the second-order elliptic equation aijDiju+biDiu=f in a bounded domain ΩRd, and establish an enhanced version of Aleksandrov's maximum principle. In particular, we consider the drift term b=(b1,,bd) in Ld and the source term fLp for some p<d. This provides an alternative and analytic proof of a result by N.V. Krylov (Ann. Probab., 2021) concerning Ld drifts. The key step involves deriving a Gehring-type inequality for Green's functions by using the Fabes-Stroock approach (Duke Math. J., 1984).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信