From KP-I lump solution to travelling waves of Gross-Pitaevskii equation

IF 2.3 1区 数学 Q1 MATHEMATICS
Yong Liu , Zhengping Wang , Juncheng Wei , Wen Yang
{"title":"From KP-I lump solution to travelling waves of Gross-Pitaevskii equation","authors":"Yong Liu ,&nbsp;Zhengping Wang ,&nbsp;Juncheng Wei ,&nbsp;Wen Yang","doi":"10.1016/j.matpur.2025.103801","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>q</em> be a nondegenerate lump type solution to the KP-I (Kadomtsev-Petviashvili-I) equation<span><span><span><math><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msubsup><mi>q</mi><mo>−</mo><mn>2</mn><msqrt><mrow><mn>2</mn></mrow></msqrt><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>q</mi><mo>−</mo><mn>3</mn><msqrt><mrow><mn>2</mn></mrow></msqrt><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><msup><mrow><mo>(</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>q</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>−</mo><mn>2</mn><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo></math></span></span></span> We show the existence of travelling wave solutions with the form <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>−</mo><mi>c</mi><mi>t</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>, for the GP (Gross-Pitaevskii) equation<span><span><span><math><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>Ψ</mi><mo>+</mo><mi>Δ</mi><mi>Ψ</mi><mo>+</mo><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>Ψ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>Ψ</mi><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></math></span></span></span> with travelling speed <span><math><mi>c</mi><mo>=</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>+</mo><mi>i</mi><mi>ε</mi><mi>q</mi><mo>+</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>. This proves the existence of finite energy solutions in the so-called Jones-Roberts program within the transonic regime <span><math><mi>c</mi><mo>∈</mo><mo>(</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>)</mo></math></span>. The main ingredients in our proof are detailed point-wise estimates for the Green functions associated to a family of fourth order hypoelliptic operators. In view of the classification of lump type solutions of the KP-I equation, our proof also indicates that for fixed small <em>ε</em>, there should exist a sequence of travelling wave solutions to GP equation, with energy tends to infinity.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103801"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002178242500145X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let q be a nondegenerate lump type solution to the KP-I (Kadomtsev-Petviashvili-I) equationx4q22x2q32x((xq)2)2y2q=0. We show the existence of travelling wave solutions with the form uε(xct,y), for the GP (Gross-Pitaevskii) equationitΨ+ΔΨ+(1|Ψ|2)Ψ=0inR2, with travelling speed c=2ε2, and uε=1+iεq+O(ε2). This proves the existence of finite energy solutions in the so-called Jones-Roberts program within the transonic regime c(2ε2,2). The main ingredients in our proof are detailed point-wise estimates for the Green functions associated to a family of fourth order hypoelliptic operators. In view of the classification of lump type solutions of the KP-I equation, our proof also indicates that for fixed small ε, there should exist a sequence of travelling wave solutions to GP equation, with energy tends to infinity.
从Gross-Pitaevskii方程的KP-I块解到行波
设q是KP-I (Kadomtsev-Petviashvili-I)方程∂x4q−22∂x2q−32∂x((∂xq)2)−2∂y2q=0的非简并块型解。我们证明了GP (Gross-Pitaevskii)方程∂tΨ+ΔΨ+(1−|Ψ|2)Ψ=0inR2的行波解的存在性,其行波解的形式为uε(x−ct,y),行进速度c=2−ε2,且uε=1+iεq+O(ε2)。这证明了所谓的Jones-Roberts规划在跨声速区间c∈(2−ε2,2)内有限能量解的存在性。我们证明的主要成分是与一组四阶半椭圆算子相关的Green函数的详细点估计。鉴于KP-I方程块状解的分类,我们的证明还表明,对于固定的小ε, GP方程的行波解应该存在一个序列,且能量趋于无穷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信