{"title":"On the magnetic Dirichlet to Neumann operator on the exterior of the disk – Diamagnetism, weak-magnetic field limit and flux effects","authors":"Bernard Helffer, François Nicoleau","doi":"10.1016/j.matpur.2025.103799","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we analyze the magnetic Dirichlet-to-Neumann operator (D-to-N map) <span><math><mover><mrow><mi>Λ</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>(</mo><mi>b</mi><mo>,</mo><mi>ν</mi><mo>)</mo></math></span> on the exterior of the disk with respect to a magnetic potential <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>ν</mi></mrow></msub><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>+</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span> where, for <span><math><mi>b</mi><mo>∈</mo><mi>R</mi></math></span> and <span><math><mi>ν</mi><mo>∈</mo><mi>R</mi></math></span>, <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mi>b</mi><mspace></mspace><mo>(</mo><mo>−</mo><mi>y</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is the Aharonov-Bohm potential centered at the origin of flux <span><math><mn>2</mn><mi>π</mi><mi>ν</mi></math></span>. First, we show that the limit of <span><math><mover><mrow><mi>Λ</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>(</mo><mi>b</mi><mo>,</mo><mi>ν</mi><mo>)</mo></math></span> as <span><math><mi>b</mi><mo>→</mo><mn>0</mn></math></span> is equal to the D-to-N map <span><math><mover><mrow><mi>Λ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>ν</mi><mo>)</mo></math></span> on the interior of the disk associated with the potential <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>. Secondly, we study the ground state energy of the D-to-N map <span><math><mover><mrow><mi>Λ</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>(</mo><mi>b</mi><mo>,</mo><mi>ν</mi><mo>)</mo></math></span> and show that the strong diamagnetism property holds. Finally we slightly extend to the exterior case the asymptotic results as <span><math><mi>b</mi><mo>→</mo><mo>∞</mo></math></span> obtained in the interior case for general domains.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103799"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001436","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we analyze the magnetic Dirichlet-to-Neumann operator (D-to-N map) on the exterior of the disk with respect to a magnetic potential where, for and , and is the Aharonov-Bohm potential centered at the origin of flux . First, we show that the limit of as is equal to the D-to-N map on the interior of the disk associated with the potential . Secondly, we study the ground state energy of the D-to-N map and show that the strong diamagnetism property holds. Finally we slightly extend to the exterior case the asymptotic results as obtained in the interior case for general domains.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.