三维不可压缩各向异性Navier-Stokes方程的全局轴对称解

IF 2.3 1区 数学 Q1 MATHEMATICS
Hui Chen , Zijin Li , Ping Zhang
{"title":"三维不可压缩各向异性Navier-Stokes方程的全局轴对称解","authors":"Hui Chen ,&nbsp;Zijin Li ,&nbsp;Ping Zhang","doi":"10.1016/j.matpur.2025.103807","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the global existence and uniqueness of axisymmetric solution to the 3D incompressible anisotropic Navier–Stokes equations in a cylindrical domain with Navier boundary condition provided that the swirl component of the initial velocity is sufficiently small. The main idea of the proof is to perform energy estimates for the pair <span><math><mo>(</mo><mi>J</mi><mo>,</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>)</mo></math></span>, where <figure><img></figure> and <figure><img></figure> is a corrector of <figure><img></figure>. In order to close the energy estimates, we introduced the derivative-reduction technique and new elliptic estimates of the pressure function, which are established to overcome difficulties arising from the lower-order terms in the Navier boundary condition. We also consider the global regularity of the axisymmetric solution to the Navier–Stokes equations with full viscosity subject to the total-slip Navier boundary condition. Several new inequalities are established to address the challenges posed by the weak horizontal diffusion of the swirl component.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103807"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global axisymmetric solution to the 3D incompressible anisotropic Navier–Stokes equations\",\"authors\":\"Hui Chen ,&nbsp;Zijin Li ,&nbsp;Ping Zhang\",\"doi\":\"10.1016/j.matpur.2025.103807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove the global existence and uniqueness of axisymmetric solution to the 3D incompressible anisotropic Navier–Stokes equations in a cylindrical domain with Navier boundary condition provided that the swirl component of the initial velocity is sufficiently small. The main idea of the proof is to perform energy estimates for the pair <span><math><mo>(</mo><mi>J</mi><mo>,</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>)</mo></math></span>, where <figure><img></figure> and <figure><img></figure> is a corrector of <figure><img></figure>. In order to close the energy estimates, we introduced the derivative-reduction technique and new elliptic estimates of the pressure function, which are established to overcome difficulties arising from the lower-order terms in the Navier boundary condition. We also consider the global regularity of the axisymmetric solution to the Navier–Stokes equations with full viscosity subject to the total-slip Navier boundary condition. Several new inequalities are established to address the challenges posed by the weak horizontal diffusion of the swirl component.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103807\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001515\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001515","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在初始速度的旋流分量足够小的条件下,证明了三维不可压缩各向异性Navier - stokes方程在圆柱域上轴对称解的整体存在唯一性。证明的主要思想是对(J,Ωc)进行能量估计,其中和是的校正器。为了关闭能量估计,我们引入了导数约简技术和新的压力函数椭圆估计,这是为了克服Navier边界条件中低阶项所带来的困难而建立的。同时考虑了全滑移Navier边界条件下具有全黏度的Navier - stokes方程轴对称解的全局正则性。建立了几个新的不等式来解决涡流分量的弱水平扩散所带来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global axisymmetric solution to the 3D incompressible anisotropic Navier–Stokes equations
In this paper, we prove the global existence and uniqueness of axisymmetric solution to the 3D incompressible anisotropic Navier–Stokes equations in a cylindrical domain with Navier boundary condition provided that the swirl component of the initial velocity is sufficiently small. The main idea of the proof is to perform energy estimates for the pair (J,Ωc), where
and
is a corrector of
. In order to close the energy estimates, we introduced the derivative-reduction technique and new elliptic estimates of the pressure function, which are established to overcome difficulties arising from the lower-order terms in the Navier boundary condition. We also consider the global regularity of the axisymmetric solution to the Navier–Stokes equations with full viscosity subject to the total-slip Navier boundary condition. Several new inequalities are established to address the challenges posed by the weak horizontal diffusion of the swirl component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信