{"title":"三维不可压缩各向异性Navier-Stokes方程的全局轴对称解","authors":"Hui Chen , Zijin Li , Ping Zhang","doi":"10.1016/j.matpur.2025.103807","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the global existence and uniqueness of axisymmetric solution to the 3D incompressible anisotropic Navier–Stokes equations in a cylindrical domain with Navier boundary condition provided that the swirl component of the initial velocity is sufficiently small. The main idea of the proof is to perform energy estimates for the pair <span><math><mo>(</mo><mi>J</mi><mo>,</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>)</mo></math></span>, where <figure><img></figure> and <figure><img></figure> is a corrector of <figure><img></figure>. In order to close the energy estimates, we introduced the derivative-reduction technique and new elliptic estimates of the pressure function, which are established to overcome difficulties arising from the lower-order terms in the Navier boundary condition. We also consider the global regularity of the axisymmetric solution to the Navier–Stokes equations with full viscosity subject to the total-slip Navier boundary condition. Several new inequalities are established to address the challenges posed by the weak horizontal diffusion of the swirl component.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103807"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global axisymmetric solution to the 3D incompressible anisotropic Navier–Stokes equations\",\"authors\":\"Hui Chen , Zijin Li , Ping Zhang\",\"doi\":\"10.1016/j.matpur.2025.103807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove the global existence and uniqueness of axisymmetric solution to the 3D incompressible anisotropic Navier–Stokes equations in a cylindrical domain with Navier boundary condition provided that the swirl component of the initial velocity is sufficiently small. The main idea of the proof is to perform energy estimates for the pair <span><math><mo>(</mo><mi>J</mi><mo>,</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>)</mo></math></span>, where <figure><img></figure> and <figure><img></figure> is a corrector of <figure><img></figure>. In order to close the energy estimates, we introduced the derivative-reduction technique and new elliptic estimates of the pressure function, which are established to overcome difficulties arising from the lower-order terms in the Navier boundary condition. We also consider the global regularity of the axisymmetric solution to the Navier–Stokes equations with full viscosity subject to the total-slip Navier boundary condition. Several new inequalities are established to address the challenges posed by the weak horizontal diffusion of the swirl component.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103807\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001515\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001515","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global axisymmetric solution to the 3D incompressible anisotropic Navier–Stokes equations
In this paper, we prove the global existence and uniqueness of axisymmetric solution to the 3D incompressible anisotropic Navier–Stokes equations in a cylindrical domain with Navier boundary condition provided that the swirl component of the initial velocity is sufficiently small. The main idea of the proof is to perform energy estimates for the pair , where and is a corrector of . In order to close the energy estimates, we introduced the derivative-reduction technique and new elliptic estimates of the pressure function, which are established to overcome difficulties arising from the lower-order terms in the Navier boundary condition. We also consider the global regularity of the axisymmetric solution to the Navier–Stokes equations with full viscosity subject to the total-slip Navier boundary condition. Several new inequalities are established to address the challenges posed by the weak horizontal diffusion of the swirl component.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.