{"title":"毛细管表面的单调性公式","authors":"Guofang Wang , Chao Xia , Xuwen Zhang","doi":"10.1016/j.matpur.2025.103802","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish monotonicity formulas for capillary surfaces in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> and in the unit ball <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and extend the result of Volkmann (2016) <span><span>[27]</span></span> for surfaces with free boundary. As applications, we obtain Li-Yau-type inequalities for the Willmore energy of capillary surfaces, and extend Fraser-Schoen's optimal area estimate for minimal free boundary surfaces in <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> (2011) <span><span>[10]</span></span> to the capillary setting, which is different to another optimal area estimate proved by Brendle (2023) <span><span>[5]</span></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103802"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity formulas for capillary surfaces\",\"authors\":\"Guofang Wang , Chao Xia , Xuwen Zhang\",\"doi\":\"10.1016/j.matpur.2025.103802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we establish monotonicity formulas for capillary surfaces in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> and in the unit ball <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and extend the result of Volkmann (2016) <span><span>[27]</span></span> for surfaces with free boundary. As applications, we obtain Li-Yau-type inequalities for the Willmore energy of capillary surfaces, and extend Fraser-Schoen's optimal area estimate for minimal free boundary surfaces in <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> (2011) <span><span>[10]</span></span> to the capillary setting, which is different to another optimal area estimate proved by Brendle (2023) <span><span>[5]</span></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103802\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001461\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001461","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we establish monotonicity formulas for capillary surfaces in the half-space and in the unit ball and extend the result of Volkmann (2016) [27] for surfaces with free boundary. As applications, we obtain Li-Yau-type inequalities for the Willmore energy of capillary surfaces, and extend Fraser-Schoen's optimal area estimate for minimal free boundary surfaces in (2011) [10] to the capillary setting, which is different to another optimal area estimate proved by Brendle (2023) [5].
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.