毛细管表面的单调性公式

IF 2.3 1区 数学 Q1 MATHEMATICS
Guofang Wang , Chao Xia , Xuwen Zhang
{"title":"毛细管表面的单调性公式","authors":"Guofang Wang ,&nbsp;Chao Xia ,&nbsp;Xuwen Zhang","doi":"10.1016/j.matpur.2025.103802","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish monotonicity formulas for capillary surfaces in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> and in the unit ball <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and extend the result of Volkmann (2016) <span><span>[27]</span></span> for surfaces with free boundary. As applications, we obtain Li-Yau-type inequalities for the Willmore energy of capillary surfaces, and extend Fraser-Schoen's optimal area estimate for minimal free boundary surfaces in <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> (2011) <span><span>[10]</span></span> to the capillary setting, which is different to another optimal area estimate proved by Brendle (2023) <span><span>[5]</span></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103802"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity formulas for capillary surfaces\",\"authors\":\"Guofang Wang ,&nbsp;Chao Xia ,&nbsp;Xuwen Zhang\",\"doi\":\"10.1016/j.matpur.2025.103802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we establish monotonicity formulas for capillary surfaces in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> and in the unit ball <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and extend the result of Volkmann (2016) <span><span>[27]</span></span> for surfaces with free boundary. As applications, we obtain Li-Yau-type inequalities for the Willmore energy of capillary surfaces, and extend Fraser-Schoen's optimal area estimate for minimal free boundary surfaces in <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> (2011) <span><span>[10]</span></span> to the capillary setting, which is different to another optimal area estimate proved by Brendle (2023) <span><span>[5]</span></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103802\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001461\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001461","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了半空间R+3和单位球B3中毛细曲面的单调性公式,推广了Volkmann(2016)[27]关于自由边界曲面的结果。作为应用,我们得到了毛细表面Willmore能量的li - yau型不等式,并将B3(2011)[10]中最小自由边界表面的Fraser-Schoen最优面积估计推广到毛细环境,这与Brendle(2023)[5]证明的另一种最优面积估计不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotonicity formulas for capillary surfaces
In this paper, we establish monotonicity formulas for capillary surfaces in the half-space R+3 and in the unit ball B3 and extend the result of Volkmann (2016) [27] for surfaces with free boundary. As applications, we obtain Li-Yau-type inequalities for the Willmore energy of capillary surfaces, and extend Fraser-Schoen's optimal area estimate for minimal free boundary surfaces in B3 (2011) [10] to the capillary setting, which is different to another optimal area estimate proved by Brendle (2023) [5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信