气体动力学中的等待时间解

IF 2.3 1区 数学 Q1 MATHEMATICS
Juhi Jang , Jiaqi Liu , Nader Masmoudi
{"title":"气体动力学中的等待时间解","authors":"Juhi Jang ,&nbsp;Jiaqi Liu ,&nbsp;Nader Masmoudi","doi":"10.1016/j.matpur.2025.103806","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we construct a continuum family of self-similar waiting time solutions for the one-dimensional compressible Euler equations for the adiabatic exponent <span><math><mi>γ</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> in the half-line with the vacuum boundary. The solutions are confined by a stationary vacuum interface for a finite time with at least <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> regularity of the velocity and the sound speed up to the boundary. Subsequently, the solutions undergo the change of the behavior, becoming only Hölder continuous near the singular point, and simultaneously transition to the solutions to the vacuum moving boundary Euler equations satisfying the physical vacuum condition. When the boundary starts moving, a weak discontinuity emanating from the singular point along the sonic curve emerges. The solutions are locally smooth in the interior region away from the vacuum boundary and the sonic curve.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103806"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waiting time solutions in gas dynamics\",\"authors\":\"Juhi Jang ,&nbsp;Jiaqi Liu ,&nbsp;Nader Masmoudi\",\"doi\":\"10.1016/j.matpur.2025.103806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we construct a continuum family of self-similar waiting time solutions for the one-dimensional compressible Euler equations for the adiabatic exponent <span><math><mi>γ</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> in the half-line with the vacuum boundary. The solutions are confined by a stationary vacuum interface for a finite time with at least <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> regularity of the velocity and the sound speed up to the boundary. Subsequently, the solutions undergo the change of the behavior, becoming only Hölder continuous near the singular point, and simultaneously transition to the solutions to the vacuum moving boundary Euler equations satisfying the physical vacuum condition. When the boundary starts moving, a weak discontinuity emanating from the singular point along the sonic curve emerges. The solutions are locally smooth in the interior region away from the vacuum boundary and the sonic curve.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103806\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001503\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001503","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了具有绝热指数γ∈(1,3)的一维可压缩欧拉方程在真空边界半直线上的自相似等待时间解的连续统族。解被一个固定的真空界面限制在有限时间内,速度和声速在边界处至少呈C1规律。随后,解发生行为变化,仅在奇点附近Hölder连续,同时过渡到满足物理真空条件的真空移动边界欧拉方程的解。当边界开始移动时,从奇异点沿声波曲线发出的弱不连续出现。解在远离真空边界和声波曲线的内部区域是局部光滑的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Waiting time solutions in gas dynamics
In this article, we construct a continuum family of self-similar waiting time solutions for the one-dimensional compressible Euler equations for the adiabatic exponent γ(1,3) in the half-line with the vacuum boundary. The solutions are confined by a stationary vacuum interface for a finite time with at least C1 regularity of the velocity and the sound speed up to the boundary. Subsequently, the solutions undergo the change of the behavior, becoming only Hölder continuous near the singular point, and simultaneously transition to the solutions to the vacuum moving boundary Euler equations satisfying the physical vacuum condition. When the boundary starts moving, a weak discontinuity emanating from the singular point along the sonic curve emerges. The solutions are locally smooth in the interior region away from the vacuum boundary and the sonic curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信