Derivation of Hartree theory for two-dimensional attractive Bose gases in almost Gross–Pitaevskii regime

IF 2.3 1区 数学 Q1 MATHEMATICS
Lukas Junge , François L.A. Visconti
{"title":"Derivation of Hartree theory for two-dimensional attractive Bose gases in almost Gross–Pitaevskii regime","authors":"Lukas Junge ,&nbsp;François L.A. Visconti","doi":"10.1016/j.matpur.2025.103800","DOIUrl":null,"url":null,"abstract":"<div><div>We study the ground state energy of trapped two-dimensional Bose gases with mean-field type interactions that can be attractive. We prove the stability of second kind of the many-body system and the convergence of the ground state energy per particle to that of a non-linear Schrödinger (NLS) energy functional. Notably, we can take any polynomial scaling of the interaction, and even exponential scalings arbitrarily close to the Gross–Pitaevskii regime, which is a drastic improvement on the best-known result for systems with attractive interactions. As a consequence of the stability of second kind we also obtain Bose–Einstein condensation for the many-body ground states for a much improved range of the diluteness parameter.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103800"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001448","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the ground state energy of trapped two-dimensional Bose gases with mean-field type interactions that can be attractive. We prove the stability of second kind of the many-body system and the convergence of the ground state energy per particle to that of a non-linear Schrödinger (NLS) energy functional. Notably, we can take any polynomial scaling of the interaction, and even exponential scalings arbitrarily close to the Gross–Pitaevskii regime, which is a drastic improvement on the best-known result for systems with attractive interactions. As a consequence of the stability of second kind we also obtain Bose–Einstein condensation for the many-body ground states for a much improved range of the diluteness parameter.
几乎Gross-Pitaevskii状态下二维吸引玻色气体Hartree理论的推导
我们研究了具有平均场相互作用的二维玻色气体的基态能量。我们证明了第二类多体系统的稳定性和每粒子的基态能量收敛于非线性Schrödinger (NLS)能量泛函。值得注意的是,我们可以对相互作用进行任何多项式缩放,甚至可以任意接近Gross-Pitaevskii状态的指数缩放,这是对具有吸引相互作用的系统的最著名结果的巨大改进。由于第二类的稳定性,我们还获得了多体基态的玻色-爱因斯坦凝聚,其稀释度参数的范围大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信