{"title":"一个种群在空间和表型结构上传播速度的定性性质","authors":"Nathanaël Boutillon","doi":"10.1016/j.matpur.2025.103804","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a nonlocal Fisher-KPP equation that models a population structured in space and in phenotype. The population lives in a heterogeneous periodic environment: the diffusion coefficient, the mutation coefficient and the fitness of an individual may depend on its spatial position and on its phenotype.</div><div>We first prove a Freidlin-Gärtner formula for the spreading speed of the population. We then study the behaviour of the spreading speed in different scaling limits (small and large period, small and large mutation coefficient). Finally, we exhibit new phenomena arising thanks to the phenotypic dimension.</div><div>Our results are also valid when the phenotype is seen as another spatial variable along which the population does not spread.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103804"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative properties of the spreading speed of a population structured in space and in phenotype\",\"authors\":\"Nathanaël Boutillon\",\"doi\":\"10.1016/j.matpur.2025.103804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a nonlocal Fisher-KPP equation that models a population structured in space and in phenotype. The population lives in a heterogeneous periodic environment: the diffusion coefficient, the mutation coefficient and the fitness of an individual may depend on its spatial position and on its phenotype.</div><div>We first prove a Freidlin-Gärtner formula for the spreading speed of the population. We then study the behaviour of the spreading speed in different scaling limits (small and large period, small and large mutation coefficient). Finally, we exhibit new phenomena arising thanks to the phenotypic dimension.</div><div>Our results are also valid when the phenotype is seen as another spatial variable along which the population does not spread.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103804\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001485\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001485","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Qualitative properties of the spreading speed of a population structured in space and in phenotype
We consider a nonlocal Fisher-KPP equation that models a population structured in space and in phenotype. The population lives in a heterogeneous periodic environment: the diffusion coefficient, the mutation coefficient and the fitness of an individual may depend on its spatial position and on its phenotype.
We first prove a Freidlin-Gärtner formula for the spreading speed of the population. We then study the behaviour of the spreading speed in different scaling limits (small and large period, small and large mutation coefficient). Finally, we exhibit new phenomena arising thanks to the phenotypic dimension.
Our results are also valid when the phenotype is seen as another spatial variable along which the population does not spread.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.