一个种群在空间和表型结构上传播速度的定性性质

IF 2.3 1区 数学 Q1 MATHEMATICS
Nathanaël Boutillon
{"title":"一个种群在空间和表型结构上传播速度的定性性质","authors":"Nathanaël Boutillon","doi":"10.1016/j.matpur.2025.103804","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a nonlocal Fisher-KPP equation that models a population structured in space and in phenotype. The population lives in a heterogeneous periodic environment: the diffusion coefficient, the mutation coefficient and the fitness of an individual may depend on its spatial position and on its phenotype.</div><div>We first prove a Freidlin-Gärtner formula for the spreading speed of the population. We then study the behaviour of the spreading speed in different scaling limits (small and large period, small and large mutation coefficient). Finally, we exhibit new phenomena arising thanks to the phenotypic dimension.</div><div>Our results are also valid when the phenotype is seen as another spatial variable along which the population does not spread.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103804"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative properties of the spreading speed of a population structured in space and in phenotype\",\"authors\":\"Nathanaël Boutillon\",\"doi\":\"10.1016/j.matpur.2025.103804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a nonlocal Fisher-KPP equation that models a population structured in space and in phenotype. The population lives in a heterogeneous periodic environment: the diffusion coefficient, the mutation coefficient and the fitness of an individual may depend on its spatial position and on its phenotype.</div><div>We first prove a Freidlin-Gärtner formula for the spreading speed of the population. We then study the behaviour of the spreading speed in different scaling limits (small and large period, small and large mutation coefficient). Finally, we exhibit new phenomena arising thanks to the phenotypic dimension.</div><div>Our results are also valid when the phenotype is seen as another spatial variable along which the population does not spread.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103804\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001485\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001485","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个非局部Fisher-KPP方程,该方程模拟了在空间和表型上结构的种群。种群生活在异质周期性环境中:个体的扩散系数、突变系数和适合度可能取决于其空间位置和表型。我们首先证明了人口扩散速度的Freidlin-Gärtner公式。然后,我们研究了不同尺度极限(小周期和大周期,小突变系数和大突变系数)下的传播速度行为。最后,我们展示了由于表型维度而产生的新现象。当表型被视为另一个空间变量时,我们的结果也是有效的,种群不会沿着这个空间变量传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative properties of the spreading speed of a population structured in space and in phenotype
We consider a nonlocal Fisher-KPP equation that models a population structured in space and in phenotype. The population lives in a heterogeneous periodic environment: the diffusion coefficient, the mutation coefficient and the fitness of an individual may depend on its spatial position and on its phenotype.
We first prove a Freidlin-Gärtner formula for the spreading speed of the population. We then study the behaviour of the spreading speed in different scaling limits (small and large period, small and large mutation coefficient). Finally, we exhibit new phenomena arising thanks to the phenotypic dimension.
Our results are also valid when the phenotype is seen as another spatial variable along which the population does not spread.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信