Yong Liu , Zhengping Wang , Juncheng Wei , Wen Yang
{"title":"从Gross-Pitaevskii方程的KP-I块解到行波","authors":"Yong Liu , Zhengping Wang , Juncheng Wei , Wen Yang","doi":"10.1016/j.matpur.2025.103801","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>q</em> be a nondegenerate lump type solution to the KP-I (Kadomtsev-Petviashvili-I) equation<span><span><span><math><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msubsup><mi>q</mi><mo>−</mo><mn>2</mn><msqrt><mrow><mn>2</mn></mrow></msqrt><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>q</mi><mo>−</mo><mn>3</mn><msqrt><mrow><mn>2</mn></mrow></msqrt><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><msup><mrow><mo>(</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>q</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>−</mo><mn>2</mn><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo></math></span></span></span> We show the existence of travelling wave solutions with the form <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>−</mo><mi>c</mi><mi>t</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>, for the GP (Gross-Pitaevskii) equation<span><span><span><math><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>Ψ</mi><mo>+</mo><mi>Δ</mi><mi>Ψ</mi><mo>+</mo><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>Ψ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>Ψ</mi><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></math></span></span></span> with travelling speed <span><math><mi>c</mi><mo>=</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>+</mo><mi>i</mi><mi>ε</mi><mi>q</mi><mo>+</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>. This proves the existence of finite energy solutions in the so-called Jones-Roberts program within the transonic regime <span><math><mi>c</mi><mo>∈</mo><mo>(</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>)</mo></math></span>. The main ingredients in our proof are detailed point-wise estimates for the Green functions associated to a family of fourth order hypoelliptic operators. In view of the classification of lump type solutions of the KP-I equation, our proof also indicates that for fixed small <em>ε</em>, there should exist a sequence of travelling wave solutions to GP equation, with energy tends to infinity.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103801"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From KP-I lump solution to travelling waves of Gross-Pitaevskii equation\",\"authors\":\"Yong Liu , Zhengping Wang , Juncheng Wei , Wen Yang\",\"doi\":\"10.1016/j.matpur.2025.103801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>q</em> be a nondegenerate lump type solution to the KP-I (Kadomtsev-Petviashvili-I) equation<span><span><span><math><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msubsup><mi>q</mi><mo>−</mo><mn>2</mn><msqrt><mrow><mn>2</mn></mrow></msqrt><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>q</mi><mo>−</mo><mn>3</mn><msqrt><mrow><mn>2</mn></mrow></msqrt><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><msup><mrow><mo>(</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>q</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>−</mo><mn>2</mn><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo></math></span></span></span> We show the existence of travelling wave solutions with the form <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>−</mo><mi>c</mi><mi>t</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>, for the GP (Gross-Pitaevskii) equation<span><span><span><math><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>Ψ</mi><mo>+</mo><mi>Δ</mi><mi>Ψ</mi><mo>+</mo><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>Ψ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>Ψ</mi><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></math></span></span></span> with travelling speed <span><math><mi>c</mi><mo>=</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>+</mo><mi>i</mi><mi>ε</mi><mi>q</mi><mo>+</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>. This proves the existence of finite energy solutions in the so-called Jones-Roberts program within the transonic regime <span><math><mi>c</mi><mo>∈</mo><mo>(</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>)</mo></math></span>. The main ingredients in our proof are detailed point-wise estimates for the Green functions associated to a family of fourth order hypoelliptic operators. In view of the classification of lump type solutions of the KP-I equation, our proof also indicates that for fixed small <em>ε</em>, there should exist a sequence of travelling wave solutions to GP equation, with energy tends to infinity.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103801\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002178242500145X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002178242500145X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
From KP-I lump solution to travelling waves of Gross-Pitaevskii equation
Let q be a nondegenerate lump type solution to the KP-I (Kadomtsev-Petviashvili-I) equation We show the existence of travelling wave solutions with the form , for the GP (Gross-Pitaevskii) equation with travelling speed , and . This proves the existence of finite energy solutions in the so-called Jones-Roberts program within the transonic regime . The main ingredients in our proof are detailed point-wise estimates for the Green functions associated to a family of fourth order hypoelliptic operators. In view of the classification of lump type solutions of the KP-I equation, our proof also indicates that for fixed small ε, there should exist a sequence of travelling wave solutions to GP equation, with energy tends to infinity.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.