具有弱衰减小初始数据的拟线性Klein-Gordon方程的长时间经典解

IF 2.3 1区 数学 Q1 MATHEMATICS
Fei Hou , Huicheng Yin
{"title":"具有弱衰减小初始数据的拟线性Klein-Gordon方程的长时间经典解","authors":"Fei Hou ,&nbsp;Huicheng Yin","doi":"10.1016/j.matpur.2025.103803","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that for the quasilinear Klein-Gordon equation with quadratic nonlinearity and sufficiently decaying small initial data, there exists a global smooth solution if the space dimensions <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. When the initial data are of size <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> in the Sobolev space, for the semilinear Klein-Gordon equation satisfying the null condition, the authors in the article (Delort and Fang, 2000 <span><span>[11]</span></span>) prove that the solution exists in time <span><math><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>≥</mo><mi>C</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mi>μ</mi></mrow></msup></mrow></msup></math></span> (<span><math><mi>μ</mi><mo>=</mo><mn>1</mn></math></span> if <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>μ</mi><mo>=</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>). In the present paper, we will focus on the general quasilinear Klein-Gordon equation without the null condition and further show that the existence time of the solution can be improved to <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> if <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>≥</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></msup></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. In addition, for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and any fixed number <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>, if the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm of the initial data with the weight <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> is small, then the solution exists globally and scatters to a free solution. Our arguments are based on the introduction of a new good unknown, the Strichartz estimate, the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm estimate and the resonance analysis.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103803"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long time classical solutions of quasilinear Klein-Gordon equations with small weakly decaying initial data\",\"authors\":\"Fei Hou ,&nbsp;Huicheng Yin\",\"doi\":\"10.1016/j.matpur.2025.103803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is well known that for the quasilinear Klein-Gordon equation with quadratic nonlinearity and sufficiently decaying small initial data, there exists a global smooth solution if the space dimensions <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. When the initial data are of size <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> in the Sobolev space, for the semilinear Klein-Gordon equation satisfying the null condition, the authors in the article (Delort and Fang, 2000 <span><span>[11]</span></span>) prove that the solution exists in time <span><math><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>≥</mo><mi>C</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mi>μ</mi></mrow></msup></mrow></msup></math></span> (<span><math><mi>μ</mi><mo>=</mo><mn>1</mn></math></span> if <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>μ</mi><mo>=</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>). In the present paper, we will focus on the general quasilinear Klein-Gordon equation without the null condition and further show that the existence time of the solution can be improved to <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> if <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>≥</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></msup></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. In addition, for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and any fixed number <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>, if the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm of the initial data with the weight <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> is small, then the solution exists globally and scatters to a free solution. Our arguments are based on the introduction of a new good unknown, the Strichartz estimate, the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm estimate and the resonance analysis.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103803\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001473\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001473","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,对于具有二次非线性和充分衰减的小初始数据的拟线性Klein-Gordon方程,当空间维数d≥2时,存在全局光滑解。在Sobolev空间中,当初始数据大小为ε>;0时,对于满足零条件的半线性Klein-Gordon方程,本文(Delort and Fang, 2000[11])证明了解在时间[0,t)上存在,且t≥cee ε−μ(当d≥3时μ=1,当d=2时μ=2/3)。本文将重点讨论不带零条件的一般拟线性Klein-Gordon方程,并进一步证明当d≥3时,解的存在时间可提高到Tε=+∞,当d=2时,解的存在时间可提高到Tε≥eCε−2。另外,对于d=2和任意固定数α>;0,如果初始数据的权重为(1+|x|)α的加权L2范数较小,则该解全局存在并散射到一个自由解。我们的论点是基于引入一个新的好未知数、Strichartz估计、加权l2 -范数估计和共振分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long time classical solutions of quasilinear Klein-Gordon equations with small weakly decaying initial data
It is well known that for the quasilinear Klein-Gordon equation with quadratic nonlinearity and sufficiently decaying small initial data, there exists a global smooth solution if the space dimensions d2. When the initial data are of size ε>0 in the Sobolev space, for the semilinear Klein-Gordon equation satisfying the null condition, the authors in the article (Delort and Fang, 2000 [11]) prove that the solution exists in time [0,Tε) with TεCeCεμ (μ=1 if d3, μ=2/3 if d=2). In the present paper, we will focus on the general quasilinear Klein-Gordon equation without the null condition and further show that the existence time of the solution can be improved to Tε=+ if d3 and TεeCε2 if d=2. In addition, for d=2 and any fixed number α>0, if the weighted L2 norm of the initial data with the weight (1+|x|)α is small, then the solution exists globally and scatters to a free solution. Our arguments are based on the introduction of a new good unknown, the Strichartz estimate, the weighted L2-norm estimate and the resonance analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信