{"title":"具有弱衰减小初始数据的拟线性Klein-Gordon方程的长时间经典解","authors":"Fei Hou , Huicheng Yin","doi":"10.1016/j.matpur.2025.103803","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that for the quasilinear Klein-Gordon equation with quadratic nonlinearity and sufficiently decaying small initial data, there exists a global smooth solution if the space dimensions <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. When the initial data are of size <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> in the Sobolev space, for the semilinear Klein-Gordon equation satisfying the null condition, the authors in the article (Delort and Fang, 2000 <span><span>[11]</span></span>) prove that the solution exists in time <span><math><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>≥</mo><mi>C</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mi>μ</mi></mrow></msup></mrow></msup></math></span> (<span><math><mi>μ</mi><mo>=</mo><mn>1</mn></math></span> if <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>μ</mi><mo>=</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>). In the present paper, we will focus on the general quasilinear Klein-Gordon equation without the null condition and further show that the existence time of the solution can be improved to <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> if <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>≥</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></msup></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. In addition, for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and any fixed number <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>, if the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm of the initial data with the weight <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> is small, then the solution exists globally and scatters to a free solution. Our arguments are based on the introduction of a new good unknown, the Strichartz estimate, the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm estimate and the resonance analysis.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103803"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long time classical solutions of quasilinear Klein-Gordon equations with small weakly decaying initial data\",\"authors\":\"Fei Hou , Huicheng Yin\",\"doi\":\"10.1016/j.matpur.2025.103803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is well known that for the quasilinear Klein-Gordon equation with quadratic nonlinearity and sufficiently decaying small initial data, there exists a global smooth solution if the space dimensions <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. When the initial data are of size <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> in the Sobolev space, for the semilinear Klein-Gordon equation satisfying the null condition, the authors in the article (Delort and Fang, 2000 <span><span>[11]</span></span>) prove that the solution exists in time <span><math><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>≥</mo><mi>C</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mi>μ</mi></mrow></msup></mrow></msup></math></span> (<span><math><mi>μ</mi><mo>=</mo><mn>1</mn></math></span> if <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>μ</mi><mo>=</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>). In the present paper, we will focus on the general quasilinear Klein-Gordon equation without the null condition and further show that the existence time of the solution can be improved to <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><mo>+</mo><mo>∞</mo></math></span> if <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>≥</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>C</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></msup></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. In addition, for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and any fixed number <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>, if the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm of the initial data with the weight <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> is small, then the solution exists globally and scatters to a free solution. Our arguments are based on the introduction of a new good unknown, the Strichartz estimate, the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm estimate and the resonance analysis.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103803\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001473\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001473","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,对于具有二次非线性和充分衰减的小初始数据的拟线性Klein-Gordon方程,当空间维数d≥2时,存在全局光滑解。在Sobolev空间中,当初始数据大小为ε>;0时,对于满足零条件的半线性Klein-Gordon方程,本文(Delort and Fang, 2000[11])证明了解在时间[0,t)上存在,且t≥cee ε−μ(当d≥3时μ=1,当d=2时μ=2/3)。本文将重点讨论不带零条件的一般拟线性Klein-Gordon方程,并进一步证明当d≥3时,解的存在时间可提高到Tε=+∞,当d=2时,解的存在时间可提高到Tε≥eCε−2。另外,对于d=2和任意固定数α>;0,如果初始数据的权重为(1+|x|)α的加权L2范数较小,则该解全局存在并散射到一个自由解。我们的论点是基于引入一个新的好未知数、Strichartz估计、加权l2 -范数估计和共振分析。
Long time classical solutions of quasilinear Klein-Gordon equations with small weakly decaying initial data
It is well known that for the quasilinear Klein-Gordon equation with quadratic nonlinearity and sufficiently decaying small initial data, there exists a global smooth solution if the space dimensions . When the initial data are of size in the Sobolev space, for the semilinear Klein-Gordon equation satisfying the null condition, the authors in the article (Delort and Fang, 2000 [11]) prove that the solution exists in time with ( if , if ). In the present paper, we will focus on the general quasilinear Klein-Gordon equation without the null condition and further show that the existence time of the solution can be improved to if and if . In addition, for and any fixed number , if the weighted norm of the initial data with the weight is small, then the solution exists globally and scatters to a free solution. Our arguments are based on the introduction of a new good unknown, the Strichartz estimate, the weighted -norm estimate and the resonance analysis.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.