Journal of Combinatorial Theory Series A最新文献

筛选
英文 中文
Cluster braid groups of Coxeter-Dynkin diagrams Coxeter-Dynkin 图的簇辫群
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-07-10 DOI: 10.1016/j.jcta.2024.105935
Zhe Han , Ping He , Yu Qiu
{"title":"Cluster braid groups of Coxeter-Dynkin diagrams","authors":"Zhe Han ,&nbsp;Ping He ,&nbsp;Yu Qiu","doi":"10.1016/j.jcta.2024.105935","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105935","url":null,"abstract":"<div><p>Cluster exchange groupoids are introduced by King-Qiu as an enhancement of cluster exchange graphs to study stability conditions and quadratic differentials. In this paper, we introduce the cluster exchange groupoid for any finite Coxeter-Dynkin diagram Δ and show that its fundamental group is isomorphic to the corresponding braid group associated with Δ.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105935"},"PeriodicalIF":0.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Restricted bargraphs and unimodal compositions 受限条形图和单模态组合
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-07-05 DOI: 10.1016/j.jcta.2024.105934
Rigoberto Flórez , José L. Ramírez , Diego Villamizar
{"title":"Restricted bargraphs and unimodal compositions","authors":"Rigoberto Flórez ,&nbsp;José L. Ramírez ,&nbsp;Diego Villamizar","doi":"10.1016/j.jcta.2024.105934","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105934","url":null,"abstract":"<div><p>In this paper, we present a study on <em>polyominoes</em>, which are polygons created by connecting unit squares along their edges. Specifically, we focus on a related concept called a <em>bargraph</em>, which is a path on a lattice in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub><mo>×</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> traced along the boundaries of a column convex polyomino where the lower edge is on the <em>x</em>-axis. To explore new variations of bargraphs, we introduce the notion of <em>non-decreasing bargraphs</em>, which incorporate an additional restriction concerning the valleys within the path. We establish intriguing connections between these novel objects and unimodal compositions. To facilitate our analysis, we employ generating functions, including <em>q</em>-series, as well as various closed formulas. These tools enable us to enumerate the different types of bargraphs based on their semi-perimeter, area, and the number of peaks. Furthermore, we provide combinatorial justifications for some of the derived closed formulas.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105934"},"PeriodicalIF":0.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000736/pdfft?md5=f5366b9dc5560c0148e0644514e1990d&pid=1-s2.0-S0097316524000736-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positivity and tails of pentagonal number series 五角数列的正数和尾数
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-07-04 DOI: 10.1016/j.jcta.2024.105933
Nian Hong Zhou
{"title":"Positivity and tails of pentagonal number series","authors":"Nian Hong Zhou","doi":"10.1016/j.jcta.2024.105933","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105933","url":null,"abstract":"<div><p>In this paper, we refine a result of Andrews and Merca on truncated pentagonal number series. Subsequently, we establish some positivity results involving Andrews–Gordon–Bressoud identities and <em>d</em>-regular partitions. In particular, we prove several conjectures of Merca and Krattenthaler–Merca–Radu on truncated pentagonal number series.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105933"},"PeriodicalIF":0.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the difference of the enhanced power graph and the power graph of a finite group 论有限群的增强幂图与幂图的区别
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-06-21 DOI: 10.1016/j.jcta.2024.105932
Sucharita Biswas , Peter J. Cameron , Angsuman Das , Hiranya Kishore Dey
{"title":"On the difference of the enhanced power graph and the power graph of a finite group","authors":"Sucharita Biswas ,&nbsp;Peter J. Cameron ,&nbsp;Angsuman Das ,&nbsp;Hiranya Kishore Dey","doi":"10.1016/j.jcta.2024.105932","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105932","url":null,"abstract":"<div><p>The difference graph <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a finite group <em>G</em> is the difference of the enhanced power graph of <em>G</em> and the power graph of <em>G</em>, where all isolated vertices are removed. In this paper we study the connectedness and perfectness of <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with respect to various properties of the underlying group <em>G</em>. We also find several connections between the difference graph of <em>G</em> and the Gruenberg-Kegel graph of <em>G</em>. We also examine the operation of twin reduction on graphs, a technique which produces smaller graphs which may be easier to analyze. Applying this technique to simple groups can have a number of outcomes, not fully understood, but including some graphs with large girth.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105932"},"PeriodicalIF":0.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flag-transitive automorphism groups of 2-designs with λ ≥ (r,λ)2 are not product type λ≥(r,λ)2的2-设计的旗跨自形群不是积型的
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-06-19 DOI: 10.1016/j.jcta.2024.105923
Huiling Li , Zhilin Zhang , Shenglin Zhou
{"title":"Flag-transitive automorphism groups of 2-designs with λ ≥ (r,λ)2 are not product type","authors":"Huiling Li ,&nbsp;Zhilin Zhang ,&nbsp;Shenglin Zhou","doi":"10.1016/j.jcta.2024.105923","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105923","url":null,"abstract":"<div><p>In this note we show that a flag-transitive automorphism group <em>G</em> of a non-trivial 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design with <span><math><mi>λ</mi><mo>≥</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> is not of product action type. In conclusion, <em>G</em> is a primitive group of affine or almost simple type.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105923"},"PeriodicalIF":1.1,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intersection density of imprimitive groups of degree pq pq 度冒号群的交集密度
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-06-12 DOI: 10.1016/j.jcta.2024.105922
Angelot Behajaina , Roghayeh Maleki , Andriaherimanana Sarobidy Razafimahatratra
{"title":"Intersection density of imprimitive groups of degree pq","authors":"Angelot Behajaina ,&nbsp;Roghayeh Maleki ,&nbsp;Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1016/j.jcta.2024.105922","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105922","url":null,"abstract":"<div><p>A subset <span><math><mi>F</mi></math></span> of a finite transitive group <span><math><mi>G</mi><mo>≤</mo><mi>Sym</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is <em>intersecting</em> if any two elements of <span><math><mi>F</mi></math></span> agree on an element of Ω. The <em>intersection density</em> of <em>G</em> is the number<span><span><span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>/</mo><mo>|</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>|</mo><mo>|</mo><mi>F</mi><mo>⊂</mo><mi>G</mi><mtext> is intersecting</mtext><mo>}</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><mi>ω</mi><mo>∈</mo><mi>Ω</mi></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> is the stabilizer of <em>ω</em> in <em>G</em>. It is known that if <span><math><mi>G</mi><mo>≤</mo><mi>Sym</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is an imprimitive group of degree a product of two odd primes <span><math><mi>p</mi><mo>&gt;</mo><mi>q</mi></math></span> admitting a block of size <em>p</em> or two complete block systems, whose blocks are of size <em>q</em>, then <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>.</p><p>In this paper, we analyze the intersection density of imprimitive groups of degree <em>pq</em> with a unique block system with blocks of size <em>q</em> based on the kernel of the induced action on blocks. For those whose kernels are non-trivial, it is proved that the intersection density is larger than 1 whenever there exists a cyclic code <em>C</em> with parameters <span><math><msub><mrow><mo>[</mo><mi>p</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> such that any codeword of <em>C</em> has weight at most <span><math><mi>p</mi><mo>−</mo><mn>1</mn></math></span>, and under some additional conditions on the cyclic code, it is a proper rational number. For those that are quasiprimitive, we reduce the cases to almost simple groups containing <span><math><mi>Alt</mi><mo>(</mo><mn>5</mn><mo>)</mo></math></span> or a projective special linear group. We give some examples where the latter has intersection density equal to 1, under some restrictions on <em>p</em> and <em>q</em>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105922"},"PeriodicalIF":1.1,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400061X/pdfft?md5=4600ca58b59525e76de9f361f9c870b7&pid=1-s2.0-S009731652400061X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remarks on MacMahon's q-series 关于麦克马洪 Q 系列的评论
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-06-03 DOI: 10.1016/j.jcta.2024.105921
Ken Ono, Ajit Singh
{"title":"Remarks on MacMahon's q-series","authors":"Ken Ono,&nbsp;Ajit Singh","doi":"10.1016/j.jcta.2024.105921","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105921","url":null,"abstract":"&lt;div&gt;&lt;p&gt;In his important 1920 paper on partitions, MacMahon defined the partition generating functions&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munderover&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munder&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munderover&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;odd&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munder&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105921"},"PeriodicalIF":1.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141240350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multiparametric Murnaghan-Nakayama rule for Macdonald polynomials 麦克唐纳多项式的多参数穆纳汉-中山规则
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-05-29 DOI: 10.1016/j.jcta.2024.105920
Naihuan Jing , Ning Liu
{"title":"A multiparametric Murnaghan-Nakayama rule for Macdonald polynomials","authors":"Naihuan Jing ,&nbsp;Ning Liu","doi":"10.1016/j.jcta.2024.105920","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105920","url":null,"abstract":"<div><p>We introduce a new family of operators as multi-parameter deformation of the one-row Macdonald polynomials. The matrix coefficients of these operators acting on the space of symmetric functions with rational coefficients in two parameters <span><math><mi>q</mi><mo>,</mo><mi>t</mi></math></span> (denoted by <span><math><mi>Λ</mi><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>) are computed by assigning some values to skew Macdonald polynomials in <em>λ</em>-ring notation. The new rule is utilized to provide new iterative formulas and also recover various existing formulas in a unified manner. Specifically the following applications are discussed: (i) A <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Murnaghan-Nakayama rule for Macdonald functions is given as a generalization of the <em>q</em>-Murnaghan-Nakayama rule; (ii) An iterative formula for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Green polynomial is deduced; (iii) A simple proof of the Murnaghan-Nakayama rule for the Hecke algebra and the Hecke-Clifford algebra is offered; (iv) A combinatorial inversion of the Pieri rule for Hall-Littlewood functions is derived with the help of the vertex operator realization of the Hall-Littlewood functions; (v) Two iterative formulae for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Kostka polynomials <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>λ</mi><mi>μ</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> are obtained from the dual version of our multiparametric Murnaghan-Nakayama rule, one of which yields an explicit formula for arbitrary <em>λ</em> and <em>μ</em> in terms of the generalized <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-binomial coefficient introduced independently by Lassalle and Okounkov.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105920"},"PeriodicalIF":1.1,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterisation of edge-affine 2-arc-transitive covers of K2n,2n K2n,2n的边缘-参数2-弧-传递盖的特性描述
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-05-29 DOI: 10.1016/j.jcta.2024.105919
Daniel R. Hawtin , Cheryl E. Praeger , Jin-Xin Zhou
{"title":"A characterisation of edge-affine 2-arc-transitive covers of K2n,2n","authors":"Daniel R. Hawtin ,&nbsp;Cheryl E. Praeger ,&nbsp;Jin-Xin Zhou","doi":"10.1016/j.jcta.2024.105919","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105919","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The family of finite 2-arc-transitive graphs of a given valency is closed under forming non-trivial &lt;em&gt;normal quotients&lt;/em&gt;, and graphs in this family having no non-trivial normal quotient are called ‘basic’. To date, the vast majority of work in the literature has focused on classifying these ‘basic’ graphs. By contrast we give here a characterisation of the normal covers of the ‘basic’ 2-arc-transitive graphs &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. The characterisation identified the special role of graphs associated with a subgroup of automorphisms called an &lt;em&gt;n-dimensional mixed dihedral group&lt;/em&gt;. This is a group &lt;em&gt;H&lt;/em&gt; with two subgroups &lt;em&gt;X&lt;/em&gt; and &lt;em&gt;Y&lt;/em&gt;, each elementary abelian of order &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, such that &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;em&gt;H&lt;/em&gt; is generated by &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;≅&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;.&lt;/p&gt;&lt;p&gt;Our characterisation shows that each 2-arc-transitive normal cover of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is either itself a Cayley graph, or is the line graph of a Cayley graph of an &lt;em&gt;n&lt;/em&gt;-dimensional mixed dihedral group. In the latter case, we show that the 2-arc-transitive group acting on the normal cover of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; induces an &lt;em&gt;edge-affine&lt;/em&gt; action on &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (and we show that such actions are one of just four possible types of 2-arc-transitive actions on &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;). As a partial converse, we provide a graph theoretic characterisation of &lt;em&gt;n&lt;/em&gt;-dimensional mixed dihedral groups, and finally, for each &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, we give an explicit construction of an &lt;em&gt;n&lt;/em&gt;-dimensional mixed dihedral group which is a 2-group of order &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;m","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105919"},"PeriodicalIF":1.1,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power-free complementary binary morphisms 无幂次互补二元态式
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-05-22 DOI: 10.1016/j.jcta.2024.105910
Jeffrey Shallit , Arseny Shur , Stefan Zorcic
{"title":"Power-free complementary binary morphisms","authors":"Jeffrey Shallit ,&nbsp;Arseny Shur ,&nbsp;Stefan Zorcic","doi":"10.1016/j.jcta.2024.105910","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105910","url":null,"abstract":"<div><p>We revisit the topic of power-free morphisms, focusing on the properties of the class of complementary morphisms. Such morphisms are defined over a 2-letter alphabet, and map the letters 0 and 1 to complementary words. We prove that every prefix of the famous Thue–Morse word <strong>t</strong> gives a complementary morphism that is <span><math><msup><mrow><mn>3</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>-free and hence <em>α</em>-free for every real number <span><math><mi>α</mi><mo>&gt;</mo><mn>3</mn></math></span>. We also describe, using a 4-state binary finite automaton, the lengths of all prefixes of <strong>t</strong> that give cubefree complementary morphisms. Next, we show that 3-free (cubefree) complementary morphisms of length <em>k</em> exist for all <span><math><mi>k</mi><mo>∉</mo><mo>{</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>}</mo></math></span>. Moreover, if <em>k</em> is not of the form <span><math><mn>3</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, then the images of letters can be chosen to be factors of <strong>t</strong>. Finally, we observe that each cubefree complementary morphism is also <em>α</em>-free for some <span><math><mi>α</mi><mo>&lt;</mo><mn>3</mn></math></span>; in contrast, no binary morphism that maps each letter to a word of length 3 (resp., a word of length 6) is <em>α</em>-free for any <span><math><mi>α</mi><mo>&lt;</mo><mn>3</mn></math></span>.</p><p>In addition to more traditional techniques of combinatorics on words, we also rely on the Walnut theorem-prover. Its use and limitations are discussed.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105910"},"PeriodicalIF":1.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141083216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信