关于麦克马洪 Q 系列的评论

IF 0.9 2区 数学 Q2 MATHEMATICS
Ken Ono, Ajit Singh
{"title":"关于麦克马洪 Q 系列的评论","authors":"Ken Ono,&nbsp;Ajit Singh","doi":"10.1016/j.jcta.2024.105921","DOIUrl":null,"url":null,"abstract":"<div><p>In his important 1920 paper on partitions, MacMahon defined the partition generating functions<span><span><span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mi>m</mi><mo>(</mo><mi>k</mi><mo>;</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span><span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>m</mi></mrow><mrow><mi>odd</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>;</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>k</mi></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></math></span></span></span>These series give infinitely many formulas for two prominent generating functions. For each non-negative <em>k</em>, we prove that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><mo>…</mo></math></span> (resp. <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><mo>…</mo></math></span>) give the generating function for the 3-colored partition function <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> (resp. the overpartition function <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span>).</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on MacMahon's q-series\",\"authors\":\"Ken Ono,&nbsp;Ajit Singh\",\"doi\":\"10.1016/j.jcta.2024.105921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In his important 1920 paper on partitions, MacMahon defined the partition generating functions<span><span><span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mi>m</mi><mo>(</mo><mi>k</mi><mo>;</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span><span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>m</mi></mrow><mrow><mi>odd</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>;</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>k</mi></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></math></span></span></span>These series give infinitely many formulas for two prominent generating functions. For each non-negative <em>k</em>, we prove that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><mo>…</mo></math></span> (resp. <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><mo>…</mo></math></span>) give the generating function for the 3-colored partition function <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> (resp. the overpartition function <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span>).</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000608\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000608","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在 1920 年关于分区的重要论文中,麦克马洪定义了分区生成函数Ak(q)=∑n=1∞m(k;n)qn:=∑0<s1<s2<⋯<skqs1+s2+⋯+sk(1−qs1)2(1−qs2)2⋯(1−qsk)2,Ck(q)=∑n=1∞modd(k;n)qn:=∑0<s1<s2<⋯<skq2s1+2s2+⋯+2sk−k(1−q2s1−1)2(1−q2s2−1)2⋯(1−q2sk−1)2.这些数列给出了两个著名生成函数的无限多公式。对于每个非负 k,我们证明 Ak(q),Ak+1(q),Ak+2(q),...(即 Ck(q),Ck+1(q),Ck+2(q),...)给出了三色分割函数 p3(n)(即超分割函数 p‾(n))的生成函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on MacMahon's q-series

In his important 1920 paper on partitions, MacMahon defined the partition generating functionsAk(q)=n=1m(k;n)qn:=0<s1<s2<<skqs1+s2++sk(1qs1)2(1qs2)2(1qsk)2,Ck(q)=n=1modd(k;n)qn:=0<s1<s2<<skq2s1+2s2++2skk(1q2s11)2(1q2s21)2(1q2sk1)2.These series give infinitely many formulas for two prominent generating functions. For each non-negative k, we prove that Ak(q),Ak+1(q),Ak+2(q), (resp. Ck(q),Ck+1(q),Ck+2(q),) give the generating function for the 3-colored partition function p3(n) (resp. the overpartition function p(n)).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信