Journal of Combinatorial Theory Series A最新文献

筛选
英文 中文
Reconstruction of hypermatrices from subhypermatrices 从次皮质重建高皮质
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-10-22 DOI: 10.1016/j.jcta.2024.105966
{"title":"Reconstruction of hypermatrices from subhypermatrices","authors":"","doi":"10.1016/j.jcta.2024.105966","DOIUrl":"10.1016/j.jcta.2024.105966","url":null,"abstract":"<div><div>For a given <em>n</em>, what is the smallest number <em>k</em> such that every sequence of length <em>n</em> is determined by the multiset of all its <em>k</em>-subsequences? This is called the <em>k</em>-deck problem for sequence reconstruction, and has been generalized to the two-dimensional case – reconstruction of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span>-matrices from submatrices. Previous works show that the smallest <em>k</em> is at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for sequences and at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for matrices. We study this <em>k</em>-deck problem for general dimension <em>d</em> and prove that, the smallest <em>k</em> is at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for reconstructing any <em>d</em> dimensional hypermatrix of order <em>n</em> from the multiset of all its subhypermatrices of order <em>k</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct constructions of column-orthogonal strong orthogonal arrays 列正交强正交阵列的直接构造
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-10-18 DOI: 10.1016/j.jcta.2024.105965
{"title":"Direct constructions of column-orthogonal strong orthogonal arrays","authors":"","doi":"10.1016/j.jcta.2024.105965","DOIUrl":"10.1016/j.jcta.2024.105965","url":null,"abstract":"<div><div>Strong orthogonal arrays have better space-filling properties than ordinary orthogonal arrays for computer experiments. Strong orthogonal arrays of strengths two plus, two star and three minus can improve the space-filling properties in low dimensions and column orthogonality plays a vital role in computer experiments. In this paper, we use difference matrices and generator matrices of linear codes to present several constructions of column-orthogonal strong orthogonal arrays of strengths two plus, two star, three minus and <em>t</em>. Our constructions can provide larger numbers of factors of column-orthogonal strong orthogonal arrays of strengths two plus, two star, three minus and <em>t</em> than those in the existing literature, enjoy flexible run sizes. These constructions are convenient, and the resulting designs are good choices for computer experiments.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indecomposable combinatorial games 不可分解的组合博弈
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-10-15 DOI: 10.1016/j.jcta.2024.105964
{"title":"Indecomposable combinatorial games","authors":"","doi":"10.1016/j.jcta.2024.105964","DOIUrl":"10.1016/j.jcta.2024.105964","url":null,"abstract":"<div><div>In Combinatorial Game Theory, short game forms are defined recursively over all the positions the two players are allowed to move to. A form is decomposable if it can be expressed as a disjunctive sum of two forms with smaller birthday. If there are no such summands, then the form is indecomposable. The main contribution of this document is the characterization of the indecomposable nimbers and the characterization of the indecomposable numbers. More precisely, a nimber is indecomposable if and only if its size is a power of two, and a number is indecomposable if and only if its absolute value is less than or equal to one.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point-line geometries related to binary equidistant codes 与二进制等距码有关的点线几何图形
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-10-04 DOI: 10.1016/j.jcta.2024.105962
{"title":"Point-line geometries related to binary equidistant codes","authors":"","doi":"10.1016/j.jcta.2024.105962","DOIUrl":"10.1016/j.jcta.2024.105962","url":null,"abstract":"<div><div>Point-line geometries whose singular subspaces correspond to binary equidistant codes are investigated. The main result is a description of automorphisms of these geometries. In some important cases, automorphisms induced by non-monomial linear automorphisms surprisingly arise.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neighborly partitions, hypergraphs and Gordon's identities 邻接分区、超图和戈登等式
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-10-04 DOI: 10.1016/j.jcta.2024.105963
{"title":"Neighborly partitions, hypergraphs and Gordon's identities","authors":"","doi":"10.1016/j.jcta.2024.105963","DOIUrl":"10.1016/j.jcta.2024.105963","url":null,"abstract":"<div><div>We prove a family of partition identities which is “dual” to the family of Andrews-Gordon's identities. These identities are inspired by a correspondence between a special type of partitions and “hypergraphs” and their proof uses combinatorial commutative algebra.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On locally n × n grid graphs 在局部 n×n 网格图上
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-09-26 DOI: 10.1016/j.jcta.2024.105957
{"title":"On locally n × n grid graphs","authors":"","doi":"10.1016/j.jcta.2024.105957","DOIUrl":"10.1016/j.jcta.2024.105957","url":null,"abstract":"<div><div>We investigate locally <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> grid graphs, that is, graphs in which the neighbourhood of any vertex is the Cartesian product of two complete graphs on <em>n</em> vertices. We consider the subclass of these graphs for which each pair of vertices at distance two is joined by sufficiently many paths of length 2. The number of such paths is known to be at most 2<em>n</em> by previous work of Blokhuis and Brouwer. We show that if each pair is joined by at least <span><math><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> such paths then the diameter is at most 3 and we give a tight upper bound on the order of the graphs. We show that graphs meeting this upper bound are distance-regular antipodal covers of complete graphs. We exhibit an infinite family of such graphs which are locally <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> grid for odd prime powers <em>n</em>, and apply these results to locally <span><math><mn>5</mn><mo>×</mo><mn>5</mn></math></span> grid graphs to obtain a classification for the case where either all <em>μ</em>-graphs (induced subgraphs on the set of common neighbours of two vertices at distance two) have order at least 8 or all <em>μ</em>-graphs have order <em>c</em> for some constant <em>c</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On power monoids and their automorphisms 论幂单子及其自动形态
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-09-25 DOI: 10.1016/j.jcta.2024.105961
{"title":"On power monoids and their automorphisms","authors":"","doi":"10.1016/j.jcta.2024.105961","DOIUrl":"10.1016/j.jcta.2024.105961","url":null,"abstract":"<div><div>Endowed with the binary operation of set addition, the family <span><math><msub><mrow><mi>P</mi></mrow><mrow><mrow><mi>fin</mi></mrow><mo>,</mo><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> of all finite subsets of <span><math><mi>N</mi></math></span> containing 0 forms a monoid, with the singleton {0} as its neutral element.</div><div>We show that the only non-trivial automorphism of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mrow><mi>fin</mi></mrow><mo>,</mo><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> is the involution <span><math><mi>X</mi><mo>↦</mo><mi>max</mi><mo>⁡</mo><mi>X</mi><mo>−</mo><mi>X</mi></math></span>. The proof leverages ideas from additive number theory and proceeds through an unconventional induction on what we call the boxing dimension of a finite set of integers, that is, the smallest number of (discrete) intervals whose union is the set itself.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Avoiding intersections of given size in finite affine spaces AG(n,2) 在有限仿射空间 AG(n,2) 中避免给定大小的交集
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-09-24 DOI: 10.1016/j.jcta.2024.105959
{"title":"Avoiding intersections of given size in finite affine spaces AG(n,2)","authors":"","doi":"10.1016/j.jcta.2024.105959","DOIUrl":"10.1016/j.jcta.2024.105959","url":null,"abstract":"<div><div>We study the set of intersection sizes of a <em>k</em>-dimensional affine subspace and a point set of size <span><math><mi>m</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></math></span> of the <em>n</em>-dimensional binary affine space <span><math><mrow><mi>AG</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. Following the theme of Erdős, Füredi, Rothschild and T. Sós, we partially determine which local densities in <em>k</em>-dimensional affine subspaces are unavoidable in all <em>m</em>-element point sets in the <em>n</em>-dimensional affine space.</div><div>We also show constructions of point sets for which the intersection sizes with <em>k</em>-dimensional affine subspaces take values from a set of a small size compared to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup></math></span>. These are built up from affine subspaces and so-called subspace evasive sets. Meanwhile, we improve the best known upper bounds on subspace evasive sets and apply results concerning the canonical signed-digit (CSD) representation of numbers.</div><div><em>Keywords</em>: unavoidable, affine subspaces, evasive sets, random methods, canonical signed-digit number system.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000980/pdfft?md5=62687b67d599290d3f204041642a9a6a&pid=1-s2.0-S0097316524000980-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On non-empty cross-t-intersecting families 关于非空交叉相交族
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-09-24 DOI: 10.1016/j.jcta.2024.105960
{"title":"On non-empty cross-t-intersecting families","authors":"","doi":"10.1016/j.jcta.2024.105960","DOIUrl":"10.1016/j.jcta.2024.105960","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> be families of <em>k</em>-element subsets of a <em>n</em>-element set. We call them cross-<em>t</em>-intersecting if <span><math><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo><mo>≥</mo><mi>t</mi></math></span> for any <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> with <span><math><mi>i</mi><mo>≠</mo><mi>j</mi></math></span>. In this paper we will prove that, for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn></math></span>, if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> are non-empty cross-<em>t</em>-intersecting families, then<span><span><span><math><munder><mo>∑</mo><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi></mrow></munder><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>≤</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><munder><mo>∑</mo><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi><mo>−</mo><mn>1</mn></mrow></munder><mrow><mo>(</mo><mtable><mtr><mtd><mi>k</mi></mtd></mtr><mtr><mtd><mi>i</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mi>i</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>m</mi><mi>M</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><mi>M</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> is the size of the maximum <em>t</em>-intersecting family of <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></math></span>. Moreover, the extremal families attaining the upper bound are characterized.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A rank two Leonard pair in Terwilliger algebras of Doob graphs Doob 图的特威里格代数中的二阶伦纳德对
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-09-23 DOI: 10.1016/j.jcta.2024.105958
{"title":"A rank two Leonard pair in Terwilliger algebras of Doob graphs","authors":"","doi":"10.1016/j.jcta.2024.105958","DOIUrl":"10.1016/j.jcta.2024.105958","url":null,"abstract":"<div><div>Let <span><math><mi>Γ</mi><mo>=</mo><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> denote the Doob graph formed by the Cartesian product of the <em>n</em>th Cartesian power of the Shrikhande graph and the <em>m</em>th Cartesian power of the complete graph on four vertices. Let <span><math><mi>T</mi><mo>=</mo><mi>T</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> denote the Terwilliger algebra of Γ with respect to a fixed vertex <em>x</em> of Γ and let <em>W</em> denote an arbitrary non-thin irreducible <em>T</em>-module in the standard module of Γ. In (Morales and Palma, 2021 <span><span>[25]</span></span>), it was shown that there exists a Lie algebra embedding <em>π</em> from the special orthogonal algebra <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> into <em>T</em> and that <em>W</em> is an irreducible <span><math><mi>π</mi><mo>(</mo><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo></math></span>-module. In this paper, we consider two Cartan subalgebras <span><math><mi>h</mi><mo>,</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> of <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> such that <span><math><mi>h</mi><mo>,</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> generate <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. Using the embedding <span><math><mi>π</mi><mo>:</mo><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>→</mo><mi>T</mi></math></span>, we show that <span><math><mi>π</mi><mo>(</mo><mi>h</mi><mo>)</mo></math></span> and <span><math><mi>π</mi><mo>(</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> act on <em>W</em> as a rank two Leonard pair. We also obtain several direct sum decompositions of <em>W</em> akin to how split decompositions are obtained from Leonard pairs of rank one.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信