{"title":"Dominance complexes, neighborhood complexes and combinatorial Alexander duals","authors":"Takahiro Matsushita , Shun Wakatsuki","doi":"10.1016/j.jcta.2024.105978","DOIUrl":"10.1016/j.jcta.2024.105978","url":null,"abstract":"<div><div>We show that the dominance complex <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> coincides with the combinatorial Alexander dual of the neighborhood complex <span><math><mi>N</mi><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> of the complement of <em>G</em>. Using this, we obtain a relation between the chromatic number <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> and the homology group of <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We also obtain several known results related to dominance complexes from well-known facts of neighborhood complexes. After that, we suggest a new method for computing the homology groups of the dominance complexes, using independence complexes of simple graphs. We show that several known computations of homology groups of dominance complexes can be reduced to known computations of independence complexes. Finally, we determine the homology group of <span><math><mi>D</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> by determining the homotopy types of the independence complex of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105978"},"PeriodicalIF":0.9,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upper bounds for the number of substructures in finite geometries from the container method","authors":"Sam Mattheus, Geertrui Van de Voorde","doi":"10.1016/j.jcta.2024.105968","DOIUrl":"10.1016/j.jcta.2024.105968","url":null,"abstract":"<div><div>We use techniques from algebraic and extremal combinatorics to derive upper bounds on the number of independent sets in several (hyper)graphs arising from finite geometry. In this way, we obtain asymptotically sharp upper bounds for partial ovoids and EKR-sets of flags in polar spaces, line spreads in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and plane spreads in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, and caps in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. The latter result extends work due to Roche-Newton and Warren <span><span>[21]</span></span> and Bhowmick and Roche-Newton <span><span>[6]</span></span>.</div><div>Finally, we investigate caps in <em>p</em>-random subsets of <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, which parallels recent work for arcs in projective planes by Bhowmick and Roche-Newton, and Roche-Newton and Warren <span><span>[6]</span></span>, <span><span>[21]</span></span>, and arcs in projective spaces by Chen, Liu, Nie and Zeng <span><span>[8]</span></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105968"},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The vector space generated by permutations of a trade or a design","authors":"E. Ghorbani , S. Kamali , G.B. Khosrovshahi","doi":"10.1016/j.jcta.2024.105969","DOIUrl":"10.1016/j.jcta.2024.105969","url":null,"abstract":"<div><div>Motivated by a classical result of Graver and Jurkat (1973) and Graham, Li, and Li (1980) in combinatorial design theory, which states that the permutations of <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> minimal trades generate the vector space of all <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> trades, we investigate the vector space spanned by permutations of an arbitrary trade. We prove that this vector space possesses a decomposition as a direct sum of subspaces formed in the same way by a specific family of so-called total trades. As an application, we demonstrate that for any <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design, its permutations can span the vector space generated by all <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> designs for sufficiently large values of <em>v</em>. In other words, any <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design, or even any <em>t</em>-trade, can be expressed as a linear combination of permutations of a fixed <em>t</em>-design. This substantially extends a result by Ghodrati (2019), who proved the same result for Steiner designs.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105969"},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some conjectures of Ballantine and Merca on truncated sums and the minimal excludant in congruences classes","authors":"Olivia X.M. Yao","doi":"10.1016/j.jcta.2024.105967","DOIUrl":"10.1016/j.jcta.2024.105967","url":null,"abstract":"<div><div>In 2012, Andrews and Merca proved a truncated theorem on Euler's pentagonal number theorem. Since then, a number of results on truncated theta series have been proved. In this paper, we find the connections between truncated sums of certain partition functions and the minimal excludant statistic which has been found to exhibit connections with a handful of objects such as Dyson's crank. We present a uniform method to confirm five conjectures on truncated sums of certain partition functions given by Ballantine and Merca. In particular, we provide partition-theoretic interpretations for some truncated sums by using the minimal excludant in congruences classes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105967"},"PeriodicalIF":0.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconstruction of hypermatrices from subhypermatrices","authors":"Wenjie Zhong , Xiande Zhang","doi":"10.1016/j.jcta.2024.105966","DOIUrl":"10.1016/j.jcta.2024.105966","url":null,"abstract":"<div><div>For a given <em>n</em>, what is the smallest number <em>k</em> such that every sequence of length <em>n</em> is determined by the multiset of all its <em>k</em>-subsequences? This is called the <em>k</em>-deck problem for sequence reconstruction, and has been generalized to the two-dimensional case – reconstruction of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span>-matrices from submatrices. Previous works show that the smallest <em>k</em> is at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for sequences and at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for matrices. We study this <em>k</em>-deck problem for general dimension <em>d</em> and prove that, the smallest <em>k</em> is at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for reconstructing any <em>d</em> dimensional hypermatrix of order <em>n</em> from the multiset of all its subhypermatrices of order <em>k</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105966"},"PeriodicalIF":0.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct constructions of column-orthogonal strong orthogonal arrays","authors":"Jingjun Bao , Lijun Ji , Juanjuan Xu","doi":"10.1016/j.jcta.2024.105965","DOIUrl":"10.1016/j.jcta.2024.105965","url":null,"abstract":"<div><div>Strong orthogonal arrays have better space-filling properties than ordinary orthogonal arrays for computer experiments. Strong orthogonal arrays of strengths two plus, two star and three minus can improve the space-filling properties in low dimensions and column orthogonality plays a vital role in computer experiments. In this paper, we use difference matrices and generator matrices of linear codes to present several constructions of column-orthogonal strong orthogonal arrays of strengths two plus, two star, three minus and <em>t</em>. Our constructions can provide larger numbers of factors of column-orthogonal strong orthogonal arrays of strengths two plus, two star, three minus and <em>t</em> than those in the existing literature, enjoy flexible run sizes. These constructions are convenient, and the resulting designs are good choices for computer experiments.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105965"},"PeriodicalIF":0.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Fisher , Neil A. McKay , Rebecca Milley , Richard J. Nowakowski , Carlos P. Santos
{"title":"Indecomposable combinatorial games","authors":"Michael Fisher , Neil A. McKay , Rebecca Milley , Richard J. Nowakowski , Carlos P. Santos","doi":"10.1016/j.jcta.2024.105964","DOIUrl":"10.1016/j.jcta.2024.105964","url":null,"abstract":"<div><div>In Combinatorial Game Theory, short game forms are defined recursively over all the positions the two players are allowed to move to. A form is decomposable if it can be expressed as a disjunctive sum of two forms with smaller birthday. If there are no such summands, then the form is indecomposable. The main contribution of this document is the characterization of the indecomposable nimbers and the characterization of the indecomposable numbers. More precisely, a nimber is indecomposable if and only if its size is a power of two, and a number is indecomposable if and only if its absolute value is less than or equal to one.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105964"},"PeriodicalIF":0.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Point-line geometries related to binary equidistant codes","authors":"Mark Pankov , Krzysztof Petelczyc , Mariusz Żynel","doi":"10.1016/j.jcta.2024.105962","DOIUrl":"10.1016/j.jcta.2024.105962","url":null,"abstract":"<div><div>Point-line geometries whose singular subspaces correspond to binary equidistant codes are investigated. The main result is a description of automorphisms of these geometries. In some important cases, automorphisms induced by non-monomial linear automorphisms surprisingly arise.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105962"},"PeriodicalIF":0.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neighborly partitions, hypergraphs and Gordon's identities","authors":"Pooneh Afsharijoo , Hussein Mourtada","doi":"10.1016/j.jcta.2024.105963","DOIUrl":"10.1016/j.jcta.2024.105963","url":null,"abstract":"<div><div>We prove a family of partition identities which is “dual” to the family of Andrews-Gordon's identities. These identities are inspired by a correspondence between a special type of partitions and “hypergraphs” and their proof uses combinatorial commutative algebra.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105963"},"PeriodicalIF":0.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On locally n × n grid graphs","authors":"Carmen Amarra , Wei Jin , Cheryl E. Praeger","doi":"10.1016/j.jcta.2024.105957","DOIUrl":"10.1016/j.jcta.2024.105957","url":null,"abstract":"<div><div>We investigate locally <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> grid graphs, that is, graphs in which the neighbourhood of any vertex is the Cartesian product of two complete graphs on <em>n</em> vertices. We consider the subclass of these graphs for which each pair of vertices at distance two is joined by sufficiently many paths of length 2. The number of such paths is known to be at most 2<em>n</em> by previous work of Blokhuis and Brouwer. We show that if each pair is joined by at least <span><math><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> such paths then the diameter is at most 3 and we give a tight upper bound on the order of the graphs. We show that graphs meeting this upper bound are distance-regular antipodal covers of complete graphs. We exhibit an infinite family of such graphs which are locally <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> grid for odd prime powers <em>n</em>, and apply these results to locally <span><math><mn>5</mn><mo>×</mo><mn>5</mn></math></span> grid graphs to obtain a classification for the case where either all <em>μ</em>-graphs (induced subgraphs on the set of common neighbours of two vertices at distance two) have order at least 8 or all <em>μ</em>-graphs have order <em>c</em> for some constant <em>c</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105957"},"PeriodicalIF":0.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}