{"title":"Quasimodular forms arising from Jacobi's theta function and special symmetric polynomials","authors":"Tewodros Amdeberhan , Leonid G. Fel , Ken Ono","doi":"10.1016/j.jcta.2025.106123","DOIUrl":null,"url":null,"abstract":"<div><div>Ramanujan derived a sequence of even weight 2<em>n</em> quasimodular forms <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> from derivatives of Jacobi's weight 3/2 theta function. Using the generating function for this sequence, one can construct sequences of quasimodular forms of all nonnegative integer weights with minimal input: a weight 1 modular form and a power series <span><math><mi>F</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. Using the weight 1 form <span><math><mi>θ</mi><msup><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>F</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>exp</mi><mo></mo><mo>(</mo><mi>X</mi><mo>/</mo><mn>2</mn><mo>)</mo></math></span>, we obtain a sequence <span><math><mo>{</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>}</mo></math></span> of weight <em>n</em> quasimodular forms on <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>4</mn><mo>)</mo></math></span> whose symmetric function avatars <span><math><msub><mrow><mover><mrow><mi>Y</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> are the symmetric polynomials <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> that arise naturally in the study of syzygies of numerical semigroups. With this information, we settle two conjectures about the <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span>. Finally, we note that these polynomials are systematically given in terms of the Borel-Hirzebruch <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-genus for spin manifolds, where one identifies power sum symmetric functions <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with Pontryagin classes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"218 ","pages":"Article 106123"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001189","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ramanujan derived a sequence of even weight 2n quasimodular forms from derivatives of Jacobi's weight 3/2 theta function. Using the generating function for this sequence, one can construct sequences of quasimodular forms of all nonnegative integer weights with minimal input: a weight 1 modular form and a power series . Using the weight 1 form and , we obtain a sequence of weight n quasimodular forms on whose symmetric function avatars are the symmetric polynomials that arise naturally in the study of syzygies of numerical semigroups. With this information, we settle two conjectures about the . Finally, we note that these polynomials are systematically given in terms of the Borel-Hirzebruch -genus for spin manifolds, where one identifies power sum symmetric functions with Pontryagin classes.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.