Quasimodular forms arising from Jacobi's theta function and special symmetric polynomials

IF 1.2 2区 数学 Q2 MATHEMATICS
Tewodros Amdeberhan , Leonid G. Fel , Ken Ono
{"title":"Quasimodular forms arising from Jacobi's theta function and special symmetric polynomials","authors":"Tewodros Amdeberhan ,&nbsp;Leonid G. Fel ,&nbsp;Ken Ono","doi":"10.1016/j.jcta.2025.106123","DOIUrl":null,"url":null,"abstract":"<div><div>Ramanujan derived a sequence of even weight 2<em>n</em> quasimodular forms <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> from derivatives of Jacobi's weight 3/2 theta function. Using the generating function for this sequence, one can construct sequences of quasimodular forms of all nonnegative integer weights with minimal input: a weight 1 modular form and a power series <span><math><mi>F</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. Using the weight 1 form <span><math><mi>θ</mi><msup><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>F</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>exp</mi><mo>⁡</mo><mo>(</mo><mi>X</mi><mo>/</mo><mn>2</mn><mo>)</mo></math></span>, we obtain a sequence <span><math><mo>{</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>}</mo></math></span> of weight <em>n</em> quasimodular forms on <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>4</mn><mo>)</mo></math></span> whose symmetric function avatars <span><math><msub><mrow><mover><mrow><mi>Y</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> are the symmetric polynomials <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> that arise naturally in the study of syzygies of numerical semigroups. With this information, we settle two conjectures about the <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span>. Finally, we note that these polynomials are systematically given in terms of the Borel-Hirzebruch <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-genus for spin manifolds, where one identifies power sum symmetric functions <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with Pontryagin classes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"218 ","pages":"Article 106123"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001189","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ramanujan derived a sequence of even weight 2n quasimodular forms U2n(q) from derivatives of Jacobi's weight 3/2 theta function. Using the generating function for this sequence, one can construct sequences of quasimodular forms of all nonnegative integer weights with minimal input: a weight 1 modular form and a power series F(X). Using the weight 1 form θ(q)2 and F(X)=exp(X/2), we obtain a sequence {Yn(q)} of weight n quasimodular forms on Γ0(4) whose symmetric function avatars Y˜n(xk) are the symmetric polynomials Tn(xk) that arise naturally in the study of syzygies of numerical semigroups. With this information, we settle two conjectures about the Tn(xk). Finally, we note that these polynomials are systematically given in terms of the Borel-Hirzebruch Aˆ-genus for spin manifolds, where one identifies power sum symmetric functions pi with Pontryagin classes.
由雅可比函数和特殊对称多项式引起的拟模形式
Ramanujan从Jacobi的权值3/2函数的导数中导出了一个偶数权值2n的拟模形式U2n(q)的序列。利用该序列的生成函数,可以构造具有最小输入的所有非负整数权的准模形式序列:权1模形式和幂级数F(X)。利用权值为1的形式θ(q)2和F(X)=exp (X/2),在Γ0(4)上得到了一个权值为n的拟模形式序列{Yn(q)},其对称函数元Y ~ n(xk)是研究数值半群协同时自然产生的对称多项式Tn(xk)。有了这些信息,我们确定了关于Tn(xk)的两个猜想。最后,我们注意到这些多项式是系统地用自旋流形的Borel-Hirzebruch A -格给出的,其中人们用Pontryagin类识别幂和对称函数pi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信