Improved asymptotics for moments of reciprocal sums for partitions into distinct parts

IF 1.2 2区 数学 Q2 MATHEMATICS
Kathrin Bringmann , Byungchan Kim , Eunmi Kim
{"title":"Improved asymptotics for moments of reciprocal sums for partitions into distinct parts","authors":"Kathrin Bringmann ,&nbsp;Byungchan Kim ,&nbsp;Eunmi Kim","doi":"10.1016/j.jcta.2025.106119","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we strongly improve asymptotics for <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> (respectively <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>) which sums reciprocals (respectively squares of reciprocals) of parts throughout all the partitions of <em>n</em> into distinct parts. The methods required are much more involved than in the case of usual partitions since the generating functions are not modular and also do not possess product expansions.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"219 ","pages":"Article 106119"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001141","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we strongly improve asymptotics for s1(n) (respectively s2(n)) which sums reciprocals (respectively squares of reciprocals) of parts throughout all the partitions of n into distinct parts. The methods required are much more involved than in the case of usual partitions since the generating functions are not modular and also do not possess product expansions.
分割成不同部分的互易和矩的改进渐近性
本文强烈改进了s1(n)(分别为s2(n))的渐近性,该渐近性对n的所有划分为不同部分的部分的倒数(分别为倒数的平方)求和。由于生成函数不是模块化的,也不具有乘积展开,因此所需的方法比通常分区的情况要复杂得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信