超平面排列的k伴随

IF 1.2 2区 数学 Q2 MATHEMATICS
Weikang Liang , Suijie Wang , Chengdong Zhao
{"title":"超平面排列的k伴随","authors":"Weikang Liang ,&nbsp;Suijie Wang ,&nbsp;Chengdong Zhao","doi":"10.1016/j.jcta.2025.106120","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce the <em>k</em>-adjoint of a given hyperplane arrangement <span><math><mi>A</mi></math></span> associated with rank-<em>k</em> elements in the intersection lattice <span><math><mi>L</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, which generalizes the classical adjoint proposed by Bixby and Coullard. The <em>k</em>-adjoint of <span><math><mi>A</mi></math></span> induces a decomposition of the Grassmannian, which we call the <span><math><mi>A</mi></math></span>-adjoint decomposition. Inspired by the work of Gelfand, Goresky, MacPherson, and Serganova, we generalize the matroid decomposition and refined Schubert decomposition of the Grassmannian from the perspective of <span><math><mi>A</mi></math></span>. Furthermore, we prove that these three decompositions are exactly the same decomposition. A notable application involves providing a combinatorial classification of all the <em>k</em>-dimensional restrictions of <span><math><mi>A</mi></math></span>. Consequently, we establish the antitonicity of some combinatorial invariants, such as Whitney numbers of the first kind and the independence numbers.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"219 ","pages":"Article 106120"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"k-Adjoint of hyperplane arrangements\",\"authors\":\"Weikang Liang ,&nbsp;Suijie Wang ,&nbsp;Chengdong Zhao\",\"doi\":\"10.1016/j.jcta.2025.106120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce the <em>k</em>-adjoint of a given hyperplane arrangement <span><math><mi>A</mi></math></span> associated with rank-<em>k</em> elements in the intersection lattice <span><math><mi>L</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, which generalizes the classical adjoint proposed by Bixby and Coullard. The <em>k</em>-adjoint of <span><math><mi>A</mi></math></span> induces a decomposition of the Grassmannian, which we call the <span><math><mi>A</mi></math></span>-adjoint decomposition. Inspired by the work of Gelfand, Goresky, MacPherson, and Serganova, we generalize the matroid decomposition and refined Schubert decomposition of the Grassmannian from the perspective of <span><math><mi>A</mi></math></span>. Furthermore, we prove that these three decompositions are exactly the same decomposition. A notable application involves providing a combinatorial classification of all the <em>k</em>-dimensional restrictions of <span><math><mi>A</mi></math></span>. Consequently, we establish the antitonicity of some combinatorial invariants, such as Whitney numbers of the first kind and the independence numbers.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"219 \",\"pages\":\"Article 106120\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525001153\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001153","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了交格L(a)中与秩k元素相关的超平面排列a的k伴随,推广了Bixby和Coullard提出的经典伴随。A的k伴随引起了格拉斯曼分解,我们称之为A伴随分解。受Gelfand, Goresky, MacPherson, and Serganova的工作启发,我们从a的角度推广了Grassmannian的类矩阵分解和细化了Schubert分解,并证明了这三种分解是完全相同的分解。一个值得注意的应用涉及提供A的所有k维限制的组合分类,因此,我们建立了一些组合不变量的反抗性,如第一类惠特尼数和独立数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
k-Adjoint of hyperplane arrangements
In this paper, we introduce the k-adjoint of a given hyperplane arrangement A associated with rank-k elements in the intersection lattice L(A), which generalizes the classical adjoint proposed by Bixby and Coullard. The k-adjoint of A induces a decomposition of the Grassmannian, which we call the A-adjoint decomposition. Inspired by the work of Gelfand, Goresky, MacPherson, and Serganova, we generalize the matroid decomposition and refined Schubert decomposition of the Grassmannian from the perspective of A. Furthermore, we prove that these three decompositions are exactly the same decomposition. A notable application involves providing a combinatorial classification of all the k-dimensional restrictions of A. Consequently, we establish the antitonicity of some combinatorial invariants, such as Whitney numbers of the first kind and the independence numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信