Journal of Combinatorial Theory Series A最新文献

筛选
英文 中文
Covering the set of p-elements in finite groups by proper subgroups 用适当的子群覆盖有限群中 p 元素的集合
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-09-20 DOI: 10.1016/j.jcta.2024.105954
Attila Maróti , Juan Martínez , Alexander Moretó
{"title":"Covering the set of p-elements in finite groups by proper subgroups","authors":"Attila Maróti ,&nbsp;Juan Martínez ,&nbsp;Alexander Moretó","doi":"10.1016/j.jcta.2024.105954","DOIUrl":"10.1016/j.jcta.2024.105954","url":null,"abstract":"<div><p>Let <em>p</em> be a prime and let <em>G</em> be a finite group which is generated by the set <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> of its <em>p</em>-elements. We show that if <em>G</em> is solvable and not a <em>p</em>-group, then the minimal number <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of proper subgroups of <em>G</em> whose union contains <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is equal to 1 less than the minimal number of proper subgroups of <em>G</em> whose union is <em>G</em>. For <em>p</em>-solvable groups <em>G</em>, we always have <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>p</mi><mo>+</mo><mn>1</mn></math></span>. We study the case of alternating and symmetric groups <em>G</em> in detail.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105954"},"PeriodicalIF":0.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000931/pdfft?md5=35b9a89a7b1644f6cad2cea930c20904&pid=1-s2.0-S0097316524000931-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proofs of some conjectures of Merca on truncated series involving the Rogers-Ramanujan functions 梅尔卡关于涉及罗杰斯-拉马努扬函数的截断数列的一些猜想的证明
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-09-19 DOI: 10.1016/j.jcta.2024.105956
Yongqiang Chen, Olivia X.M. Yao
{"title":"Proofs of some conjectures of Merca on truncated series involving the Rogers-Ramanujan functions","authors":"Yongqiang Chen,&nbsp;Olivia X.M. Yao","doi":"10.1016/j.jcta.2024.105956","DOIUrl":"10.1016/j.jcta.2024.105956","url":null,"abstract":"<div><p>In 2012, Andrews and Merca investigated the truncated version of the Euler pentagonal number theorem. Their work has opened up a new study on truncated theta series and has inspired several mathematicians to work on the topic. In 2019, Merca studied the Rogers-Ramanujan functions and posed three groups of conjectures on truncated series involving the Rogers-Ramanujan functions. In this paper, we present a uniform method to prove the three groups of conjectures given by Merca based on a result due to Pólya and Szegö.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105956"},"PeriodicalIF":0.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the proportion of metric matroids whose Jacobians have nontrivial p-torsion 关于雅各布有非三角 p 扭转的公因子矩阵的比例
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-09-16 DOI: 10.1016/j.jcta.2024.105953
Sergio Ricardo Zapata Ceballos
{"title":"On the proportion of metric matroids whose Jacobians have nontrivial p-torsion","authors":"Sergio Ricardo Zapata Ceballos","doi":"10.1016/j.jcta.2024.105953","DOIUrl":"10.1016/j.jcta.2024.105953","url":null,"abstract":"<div><p>We study the proportion of metric matroids whose Jacobians have nontrivial <em>p</em>-torsion. We establish a correspondence between these Jacobians and the <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-rational points on configuration hypersurfaces, thereby relating their proportions. By counting points over finite fields, we prove that the proportion of these Jacobians is asymptotically equivalent to <span><math><mn>1</mn><mo>/</mo><mi>p</mi></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105953"},"PeriodicalIF":0.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400092X/pdfft?md5=d8e2893424d34795a1338a7aa80035a5&pid=1-s2.0-S009731652400092X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate generalized Steiner systems and near-optimal constant weight codes 近似广义斯泰纳系统和近优恒定权重码
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-09-11 DOI: 10.1016/j.jcta.2024.105955
Miao Liu , Chong Shangguan
{"title":"Approximate generalized Steiner systems and near-optimal constant weight codes","authors":"Miao Liu ,&nbsp;Chong Shangguan","doi":"10.1016/j.jcta.2024.105955","DOIUrl":"10.1016/j.jcta.2024.105955","url":null,"abstract":"<div><p>Constant weight codes (CWCs) and constant composition codes (CCCs) are two important classes of codes that have been studied extensively in both combinatorics and coding theory for nearly sixty years. In this paper we show that for <em>all</em> fixed odd distances, there exist near-optimal CWCs and CCCs asymptotically achieving the classic Johnson-type upper bounds.</p><p>Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> denote the maximum size of <em>q</em>-ary CWCs of length <em>n</em> with constant weight <em>w</em> and minimum distance <em>d</em>. One of our main results shows that for <em>all</em> fixed <span><math><mi>q</mi><mo>,</mo><mi>w</mi></math></span> and odd <em>d</em>, one has <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mfrac><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>)</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msup></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mi>w</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>)</mo></mrow></mfrac></math></span>, where <span><math><mi>t</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>w</mi><mo>−</mo><mi>d</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This implies the existence of near-optimal generalized Steiner systems originally introduced by Etzion, and can be viewed as a counterpart of a celebrated result of Rödl on the existence of near-optimal Steiner systems. Note that prior to our work, very little is known about <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> for <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>. A similar result is proved for the maximum size of CCCs.</p><p>We provide different proofs for our two main results, based on two strengthenings of the well-known Frankl-Rödl-Pippenger theorem on the existence of near-optimal matchings in hypergraphs: the first proof follows by Kahn's linear programming variation of the above theorem, and the second follows by the recent independent work of Delcourt-Postle, and Glock-Joos-Kim-Kühn-Lichev on the existence of near-optimal matchings avoiding certain forbidden configurations.</p><p>We also present several intriguing open questions for future research.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105955"},"PeriodicalIF":0.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000943/pdfft?md5=65eb96db9a426be78f5105ffe48c2ece&pid=1-s2.0-S0097316524000943-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on tournament m-semiregular representations of finite groups 关于有限群 m-semiregular 代表锦标赛的说明
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-09-04 DOI: 10.1016/j.jcta.2024.105952
Jia-Li Du
{"title":"A note on tournament m-semiregular representations of finite groups","authors":"Jia-Li Du","doi":"10.1016/j.jcta.2024.105952","DOIUrl":"10.1016/j.jcta.2024.105952","url":null,"abstract":"<div><p>For a positive integer <em>m</em>, a group <em>G</em> is said to admit a <em>tournament m-semiregular representation</em> (T<em>m</em>SR for short) if there exists a tournament Γ such that the automorphism group of Γ is isomorphic to <em>G</em> and acts semiregularly on the vertex set of Γ with <em>m</em> orbits. It is easy to see that every finite group of even order does not admit a T<em>m</em>SR for any positive integer <em>m</em>. The T1SR is the well-known tournament regular representation (TRR for short). In 1970s, Babai and Imrich proved that every finite group of odd order admits a TRR except for <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, and every group (finite or infinite) without element of order 2 having an independent generating set admits a T2SR in (1979) <span><span>[3]</span></span>. Later, Godsil correct the result by showing that the only finite groups of odd order without a TRR are <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> by a probabilistic approach in (1986) <span><span>[11]</span></span>. In this note, it is shown that every finite group of odd order has a T<em>m</em>SR for every <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105952"},"PeriodicalIF":0.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000918/pdfft?md5=9f9703a561ce567e377942546fcc91e2&pid=1-s2.0-S0097316524000918-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The separating Noether number of abelian groups of rank two 二阶无性群的分离诺特数
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-08-29 DOI: 10.1016/j.jcta.2024.105951
Barna Schefler
{"title":"The separating Noether number of abelian groups of rank two","authors":"Barna Schefler","doi":"10.1016/j.jcta.2024.105951","DOIUrl":"10.1016/j.jcta.2024.105951","url":null,"abstract":"<div><p>The exact value of the separating Noether number of an arbitrary finite abelian group of rank two is determined. This is done by a detailed study of the monoid of zero-sum sequences over the group.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105951"},"PeriodicalIF":0.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000906/pdfft?md5=440ee51944dfcc0609d997a9aaba1b3f&pid=1-s2.0-S0097316524000906-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Young tableau reconstruction via minors 通过未成年人重建幼年台构图
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-08-26 DOI: 10.1016/j.jcta.2024.105950
William Q. Erickson, Daniel Herden, Jonathan Meddaugh, Mark R. Sepanski, Cordell Hammon, Jasmin Mohn, Indalecio Ruiz-Bolanos
{"title":"Young tableau reconstruction via minors","authors":"William Q. Erickson,&nbsp;Daniel Herden,&nbsp;Jonathan Meddaugh,&nbsp;Mark R. Sepanski,&nbsp;Cordell Hammon,&nbsp;Jasmin Mohn,&nbsp;Indalecio Ruiz-Bolanos","doi":"10.1016/j.jcta.2024.105950","DOIUrl":"10.1016/j.jcta.2024.105950","url":null,"abstract":"<div><p>The tableau reconstruction problem, posed by Monks (2009), asks the following. Starting with a standard Young tableau <em>T</em>, a 1-minor of <em>T</em> is a tableau obtained by first deleting any cell of <em>T</em>, and then performing jeu de taquin slides to fill the resulting gap. This can be iterated to arrive at the set of <em>k</em>-minors of <em>T</em>. The problem is this: given <em>k</em>, what are the values of <em>n</em> such that every tableau of size <em>n</em> can be reconstructed from its set of <em>k</em>-minors? For <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, the problem was recently solved by Cain and Lehtonen. In this paper, we solve the problem for <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, proving the sharp lower bound <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. In the case of multisets of <em>k</em>-minors, we also give a lower bound for arbitrary <em>k</em>, as a first step toward a sharp bound in the general multiset case.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105950"},"PeriodicalIF":0.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400089X/pdfft?md5=9b63472f7cd5508023664fdfaa81b914&pid=1-s2.0-S009731652400089X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some expansion formulas for q-series and their applications q 系列的一些展开公式及其应用
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-08-12 DOI: 10.1016/j.jcta.2024.105941
Bing He, Suzhen Wen
{"title":"Some expansion formulas for q-series and their applications","authors":"Bing He,&nbsp;Suzhen Wen","doi":"10.1016/j.jcta.2024.105941","DOIUrl":"10.1016/j.jcta.2024.105941","url":null,"abstract":"<div><p>In this paper, we establish some general expansion formulas for <em>q</em>-series. Three of Liu's identities motivate us to search and find such type of formulas. These expansion formulas include as special cases or limiting cases many <em>q</em>-identities including the <em>q</em>-Gauss summation formula, the <em>q</em>-Pfaff-Saalschütz summation formula, three of Jackson's transformation formulas and Sears' terminating <span><math><mmultiscripts><mrow><mi>ϕ</mi></mrow><mrow><mn>3</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>4</mn></mrow><none></none></mmultiscripts></math></span> transformation formula. As applications, we provide a new proof of the orthogonality relation for continuous dual <em>q</em>-Hahn polynomials, establish some generating functions for special values of the Dirichlet <em>L</em>-functions and the Hurwitz zeta functions, give extensions of three of Liu's identities, establish an extension of Dilcher's identity, and deduce various double Rogers-Ramanujan type identities.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105941"},"PeriodicalIF":0.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000803/pdfft?md5=d91a5172bf5711eb304237933cd5055a&pid=1-s2.0-S0097316524000803-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
r-Euler-Mahonian statistics on permutations 关于排列的r-Euler-Mahonian统计
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-08-06 DOI: 10.1016/j.jcta.2024.105940
Shao-Hua Liu
{"title":"r-Euler-Mahonian statistics on permutations","authors":"Shao-Hua Liu","doi":"10.1016/j.jcta.2024.105940","DOIUrl":"10.1016/j.jcta.2024.105940","url":null,"abstract":"<div><p>Let <span><math><mi>r</mi><mtext>des</mtext></math></span> and <span><math><mi>r</mi><mtext>exc</mtext></math></span> denote the permutation statistics <em>r</em>-descent number and <em>r</em>-excedance number, respectively. We prove that the pairs of permutation statistics <span><math><mo>(</mo><mi>r</mi><mtext>des</mtext><mo>,</mo><mi>r</mi><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mtext>exc</mtext><mo>,</mo><mi>r</mi><mtext>den</mtext><mo>)</mo></math></span> are equidistributed, where <span><math><mi>r</mi><mtext>maj</mtext></math></span> denotes the <em>r</em>-major index defined by Don Rawlings and <span><math><mi>r</mi><mtext>den</mtext></math></span> denotes the <em>r</em>-Denert's statistic defined by Guo-Niu Han. When <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>, this result reduces to the equidistribution of <span><math><mo>(</mo><mtext>des</mtext><mo>,</mo><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mtext>exc</mtext><mo>,</mo><mtext>den</mtext><mo>)</mo></math></span>, which was conjectured by Denert in 1990 and proved that same year by Foata and Zeilberger. We call a pair of permutation statistics that is equidistributed with <span><math><mo>(</mo><mi>r</mi><mtext>des</mtext><mo>,</mo><mi>r</mi><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mtext>exc</mtext><mo>,</mo><mi>r</mi><mtext>den</mtext><mo>)</mo></math></span> an <em>r</em>-Euler-Mahonian statistic, which reduces to the classical Euler-Mahonian statistic when <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>.</p><p>We then introduce the notions of <em>r</em>-level descent number, <em>r</em>-level excedance number, <em>r</em>-level major index, and <em>r</em>-level Denert's statistic, denoted by <span><math><msub><mrow><mtext>des</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>exc</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>maj</mtext></mrow><mrow><mi>r</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mtext>den</mtext></mrow><mrow><mi>r</mi></mrow></msub></math></span>, respectively. We prove that <span><math><mo>(</mo><msub><mrow><mtext>des</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>maj</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> is <em>r</em>-Euler-Mahonian and conjecture that <span><math><mo>(</mo><msub><mrow><mtext>exc</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>den</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> is <em>r</em>-Euler-Mahonian. Furthermore, we give an extension of the above result and conjecture.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105940"},"PeriodicalIF":0.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The q-Onsager algebra and the quantum torus q-Onsager 代数和量子环
IF 0.9 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2024-08-02 DOI: 10.1016/j.jcta.2024.105939
Owen Goff
{"title":"The q-Onsager algebra and the quantum torus","authors":"Owen Goff","doi":"10.1016/j.jcta.2024.105939","DOIUrl":"10.1016/j.jcta.2024.105939","url":null,"abstract":"<div><p>The <em>q</em>-Onsager algebra, denoted <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, is defined by two generators <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and two relations called the <em>q</em>-Dolan-Grady relations. Recently, Terwilliger introduced some elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, said to be alternating. These elements are denoted<span><span><span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>W</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>.</mo></math></span></span></span></p><p>The alternating elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are defined recursively. By construction, they are polynomials in <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. It is currently unknown how to express these polynomials in closed form.</p><p>In this paper, we consider an algebra <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, called the quantum torus. We present a basis for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and define an algebra homomorphism <span><math><mi>p</mi><mo>:</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>↦</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In our main result, we express the <em>p</em>-images of the alternating elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> in the basis for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. These expressions are in a closed form that we find attractive.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105939"},"PeriodicalIF":0.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信