Journal of Combinatorial Theory Series A最新文献

筛选
英文 中文
Union-closed sets and Horn Boolean functions 并集闭集与Horn布尔函数
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2023-10-11 DOI: 10.1016/j.jcta.2023.105818
Vadim Lozin , Viktor Zamaraev
{"title":"Union-closed sets and Horn Boolean functions","authors":"Vadim Lozin ,&nbsp;Viktor Zamaraev","doi":"10.1016/j.jcta.2023.105818","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105818","url":null,"abstract":"<div><p>A family <span><math><mi>F</mi></math></span> of sets is union-closed if the union of any two sets from <span><math><mi>F</mi></math></span> belongs to <span><math><mi>F</mi></math></span>. The union-closed sets conjecture states that if <span><math><mi>F</mi></math></span> is a finite union-closed family of finite sets, then there is an element that belongs to at least half of the sets in <span><math><mi>F</mi></math></span>. The conjecture has several equivalent formulations in terms of other combinatorial structures such as lattices and graphs. In its whole generality the conjecture remains wide open, but it was verified for various important classes of lattices, such as lower semimodular lattices, and graphs, such as chordal bipartite graphs. In the present paper we develop a Boolean approach to the conjecture and verify it for several classes of Boolean functions, such as submodular functions and double Horn functions.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"202 ","pages":"Article 105818"},"PeriodicalIF":1.1,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50187331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cycles of even-odd drop permutations and continued fractions of Genocchi numbers 奇偶数下降排列的循环与Genocchi数的连分式
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2023-10-01 DOI: 10.1016/j.jcta.2023.105778
Qiongqiong Pan , Jiang Zeng
{"title":"Cycles of even-odd drop permutations and continued fractions of Genocchi numbers","authors":"Qiongqiong Pan ,&nbsp;Jiang Zeng","doi":"10.1016/j.jcta.2023.105778","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105778","url":null,"abstract":"<div><p><span><span><span>Recently Lazar and Wachs proved two new permutation models, called D-permutations and E-permutations, for Genocchi and median Genocchi numbers. In a follow-up, Eu et al. studied the even-odd descent permutations, which are in </span>bijection with E-permutations. We generalize Eu et al.'s descent polynomials with eight </span>statistics and obtain an explicit J-fraction formula for their ordinary generaing function. The J-fraction permits us to confirm two conjectures of Lazar-Wachs about cycles of D and E permutations and obtain a </span><span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-analogue of Eu et al.'s gamma-formula. Moreover, the <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span><span> gamma-coefficients have the same factorization flavor as the gamma-coefficients of Brändén's </span><span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-Eulerian polynomials.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"199 ","pages":"Article 105778"},"PeriodicalIF":1.1,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50185175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Further investigations on permutation based constructions of bent functions bent函数基于置换构造的进一步研究
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2023-10-01 DOI: 10.1016/j.jcta.2023.105779
Kangquan Li , Chunlei Li , Tor Helleseth , Longjiang Qu
{"title":"Further investigations on permutation based constructions of bent functions","authors":"Kangquan Li ,&nbsp;Chunlei Li ,&nbsp;Tor Helleseth ,&nbsp;Longjiang Qu","doi":"10.1016/j.jcta.2023.105779","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105779","url":null,"abstract":"<div><p><span><span><span>Constructing bent functions by composing a Boolean function with a </span>permutation was introduced by Hou and Langevin in 1997. The approach appears simple but heavily depends on the construction of desirable permutations. In this paper, we further study this approach by investigating the exponential sums of certain </span>monomials and permutations. We propose several classes of bent functions from quadratic permutations and permutations with (generalized) Niho exponents, and also a class of bent functions from a generalization of the Maiorana-McFarland class. The relations among the proposed bent functions and the known families of bent function are studied. Numerical results show that our constructions include bent functions that are not contained in the completed Maiorana-McFarland class </span><span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>#</mi></mrow></msup></math></span>, the class <span><math><msub><mrow><mi>PS</mi></mrow><mrow><mi>a</mi><mi>p</mi></mrow></msub></math></span> or the class <span><math><mi>H</mi></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"199 ","pages":"Article 105779"},"PeriodicalIF":1.1,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50185176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integer colorings with forbidden rainbow sums 带禁止彩虹和的整数着色
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2023-10-01 DOI: 10.1016/j.jcta.2023.105769
Yangyang Cheng , Yifan Jing , Lina Li , Guanghui Wang , Wenling Zhou
{"title":"Integer colorings with forbidden rainbow sums","authors":"Yangyang Cheng ,&nbsp;Yifan Jing ,&nbsp;Lina Li ,&nbsp;Guanghui Wang ,&nbsp;Wenling Zhou","doi":"10.1016/j.jcta.2023.105769","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105769","url":null,"abstract":"<div><p>For a set of positive integers <span><math><mi>A</mi><mo>⊆</mo><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, an <em>r</em>-coloring of <em>A</em> is rainbow sum-free if it contains no rainbow Schur triple. In this paper we initiate the study of the rainbow Erdős-Rothschild problem in the context of sum-free sets, which asks for the subsets of <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> with the maximum number of rainbow sum-free <em>r</em>-colorings. We show that for <span><math><mi>r</mi><mo>=</mo><mn>3</mn></math></span>, the interval <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> is optimal, while for <span><math><mi>r</mi><mo>≥</mo><mn>8</mn></math></span>, the set <span><math><mo>[</mo><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>,</mo><mi>n</mi><mo>]</mo></math></span> is optimal. We also prove a stability theorem for <span><math><mi>r</mi><mo>≥</mo><mn>4</mn></math></span><span>. The proofs rely on the hypergraph container method, and some ad-hoc stability analysis.</span></p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"199 ","pages":"Article 105769"},"PeriodicalIF":1.1,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50185178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Successive vertex orderings of fully regular graphs 完全正则图的连续顶点序
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2023-10-01 DOI: 10.1016/j.jcta.2023.105776
Lixing Fang , Hao Huang , János Pach , Gábor Tardos , Junchi Zuo
{"title":"Successive vertex orderings of fully regular graphs","authors":"Lixing Fang ,&nbsp;Hao Huang ,&nbsp;János Pach ,&nbsp;Gábor Tardos ,&nbsp;Junchi Zuo","doi":"10.1016/j.jcta.2023.105776","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105776","url":null,"abstract":"<div><p>A graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is called <em>fully regular</em> if for every independent set <span><math><mi>I</mi><mo>⊂</mo><mi>V</mi></math></span>, the number of vertices in <span><math><mi>V</mi><mo>∖</mo><mi>I</mi></math></span> that are not connected to any element of <em>I</em> depends only on the size of <em>I</em>. A linear ordering of the vertices of <em>G</em> is called <em>successive</em> if for every <em>i</em>, the first <em>i</em> vertices induce a connected subgraph of <em>G</em>. We give an explicit formula for the number of successive vertex orderings of a fully regular graph.</p><p>As an application of our results, we give alternative proofs of two theorems of Stanley and Gao &amp; Peng, determining the number of linear <em>edge</em> orderings of complete graphs and complete bipartite graphs, respectively, with the property that the first <em>i</em> edges induce a connected subgraph.</p><p>As another application, we give a simple product formula for the number of linear orderings of the hyperedges of a complete 3-partite 3-uniform hypergraph such that, for every <em>i</em>, the first <em>i</em> hyperedges induce a connected subgraph. We found similar formulas for complete (non-partite) 3-uniform hypergraphs and in another closely related case, but we managed to verify them only when the number of vertices is small.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"199 ","pages":"Article 105776"},"PeriodicalIF":1.1,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50185174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Stirling permutation codes Stirling置换码
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2023-10-01 DOI: 10.1016/j.jcta.2023.105777
Shi-Mei Ma , Hao Qi , Jean Yeh , Yeong-Nan Yeh
{"title":"Stirling permutation codes","authors":"Shi-Mei Ma ,&nbsp;Hao Qi ,&nbsp;Jean Yeh ,&nbsp;Yeong-Nan Yeh","doi":"10.1016/j.jcta.2023.105777","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105777","url":null,"abstract":"<div><p><span>The development of the theory of the second-order Eulerian polynomials began with the works of Buckholtz and Carlitz in their studies of an asymptotic expansion<span><span>. Gessel-Stanley introduced Stirling permutations and provided combinatorial interpretations for the second-order Eulerian polynomials in terms of Stirling permutations. The Stirling permutations have been extensively studied by many researchers. The motivation of this paper is to develop a general method for finding equidistributed </span>statistics<span> on Stirling permutations. Firstly, we show that the up-down-pair statistic is equidistributed with the ascent-plateau statistic, and that the exterior up-down-pair statistic is equidistributed with the left ascent-plateau statistic. Secondly, we introduce the Stirling permutation code (called SP-code). A large number of equidistribution<span><span> results follow from simple applications of the SP-codes. In particular, we find that six bivariable set-valued statistics are equidistributed on the set of Stirling permutations, and we generalize a classical result on trivariate version of the second-order Eulerian polynomial, which was independently established by Dumont and Bóna. Thirdly, we explore the bijections among Stirling permutation codes, </span>perfect matchings and trapezoidal words. We then show the </span></span></span></span><em>e</em><span>-positivity of the enumerators of Stirling permutations by left ascent-plateaux, exterior up-down-pairs and right plateau-descents. In the final part, the </span><em>e</em>-positivity of the multivariate <em>k</em>-th order Eulerian polynomials is established, which improves a classical result of Janson-Kuba-Panholzer and generalizes a recent result of Chen-Fu. These <em>e</em>-positive expansions are derived from the combinatorial theory of context-free grammars.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"199 ","pages":"Article 105777"},"PeriodicalIF":1.1,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50185177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ramsey non-goodness involving books 拉姆齐非善涉书
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2023-10-01 DOI: 10.1016/j.jcta.2023.105780
Chunchao Fan, Qizhong Lin
{"title":"Ramsey non-goodness involving books","authors":"Chunchao Fan,&nbsp;Qizhong Lin","doi":"10.1016/j.jcta.2023.105780","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105780","url":null,"abstract":"&lt;div&gt;&lt;p&gt;In 1983, Burr and Erdős initiated the study of Ramsey goodness problems. Nikiforov and Rousseau (2009) resolved almost all goodness questions raised by Burr and Erdős, in which the bounds on the parameters are of tower type since their proofs rely on the regularity lemma. Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be the book graph on &lt;em&gt;n&lt;/em&gt; vertices which consists of &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; copies of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; all sharing a common &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, and let &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be the complete &lt;em&gt;p&lt;/em&gt;-partite graph with parts of sizes &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;.&lt;/p&gt;&lt;p&gt;Recently, avoiding use of the regularity lemma, Fox, He and Wigderson (2023) revisit several Ramsey goodness results involving books. They comment that it would be very interesting to see how far one can push these ideas. In particular, they conjecture that for all integers &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, there exists some &lt;span&gt;&lt;math&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; such that for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, we have &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/m","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"199 ","pages":"Article 105780"},"PeriodicalIF":1.1,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50185173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On linear diameter perfect Lee codes with distance 6 关于距离为6的线性直径完美Lee码
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2023-09-22 DOI: 10.1016/j.jcta.2023.105816
Tao Zhang , Gennian Ge
{"title":"On linear diameter perfect Lee codes with distance 6","authors":"Tao Zhang ,&nbsp;Gennian Ge","doi":"10.1016/j.jcta.2023.105816","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105816","url":null,"abstract":"<div><p>In 1968, Golomb and Welch conjectured that there is no perfect Lee codes with radius <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and dimension <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. A diameter perfect code is a natural generalization of the perfect code. In 2011, Etzion (2011) <span>[5]</span> proposed the following problem: Are there diameter perfect Lee (DPL, for short) codes with distance greater than four besides the <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span> code? Later, Horak and AlBdaiwi (2012) <span>[12]</span> conjectured that there are no <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> codes for dimension <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and distance <span><math><mi>d</mi><mo>&gt;</mo><mn>4</mn></math></span> except for <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span>. In this paper, we give a counterexample to this conjecture. Moreover, we prove that for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, there is a linear <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>,</mo><mn>6</mn><mo>)</mo></math></span> code if and only if <span><math><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>11</mn></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"201 ","pages":"Article 105816"},"PeriodicalIF":1.1,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50198817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Partitioning into common independent sets via relaxing strongly base orderability 通过放松强基可序性划分为公共独立集
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2023-09-22 DOI: 10.1016/j.jcta.2023.105817
Kristóf Bérczi, Tamás Schwarcz
{"title":"Partitioning into common independent sets via relaxing strongly base orderability","authors":"Kristóf Bérczi,&nbsp;Tamás Schwarcz","doi":"10.1016/j.jcta.2023.105817","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105817","url":null,"abstract":"<div><p>The problem of covering the ground set of two matroids by a minimum number of common independent sets is notoriously hard even in very restricted settings, i.e. when the goal is to decide if two common independent sets suffice or not. Nevertheless, as the problem generalizes several long-standing open questions, identifying tractable cases is of particular interest. Strongly base orderable matroids form a class for which a basis-exchange condition that is much stronger than the standard axiom is met. As a result, several problems that are open for arbitrary matroids can be solved for this class. In particular, Davies and McDiarmid showed that if both matroids are strongly base orderable, then the covering number of their intersection coincides with the maximum of their covering numbers.</p><p>Motivated by their result, we propose relaxations of strongly base orderability in two directions. First we weaken the basis-exchange condition, which leads to the definition of a new, complete class of matroids with distinguished algorithmic properties. Second, we introduce the notion of covering the circuits of a matroid by a graph, and consider the cases when the graph is (A) 2-regular, or (B) a path. We give an extensive list of results explaining how the proposed relaxations compare to existing conjectures and theorems on coverings by common independent sets.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"202 ","pages":"Article 105817"},"PeriodicalIF":1.1,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50187328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-geodesic transitive graphs of order pn with n ≤ 3 两个n阶pn的测地传递图 ≤ 3.
IF 1.1 2区 数学
Journal of Combinatorial Theory Series A Pub Date : 2023-09-18 DOI: 10.1016/j.jcta.2023.105814
Jun-Jie Huang, Yan-Quan Feng, Jin-Xin Zhou, Fu-Gang Yin
{"title":"Two-geodesic transitive graphs of order pn with n ≤ 3","authors":"Jun-Jie Huang,&nbsp;Yan-Quan Feng,&nbsp;Jin-Xin Zhou,&nbsp;Fu-Gang Yin","doi":"10.1016/j.jcta.2023.105814","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105814","url":null,"abstract":"<div><p>A vertex triple <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> of a graph is called a 2<em>-geodesic</em> if <em>v</em> is adjacent to both <em>u</em> and <em>w</em> and <em>u</em> is not adjacent to <em>w</em>. A graph is said to be 2<em>-geodesic transitive</em><span> if its automorphism group is transitive on the set of 2-geodesics. In this paper, a complete classification of 2-geodesic transitive graphs of order </span><span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is given for each prime <em>p</em> and <span><math><mi>n</mi><mo>≤</mo><mn>3</mn></math></span><span>. It turns out that all such graphs consist of three small graphs: the complete bipartite graph </span><span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow></msub></math></span> of order 8, the Schläfli graph of order 27 and its complement, and fourteen infinite families: the cycles <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span>, the complete graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span>, the complete multipartite graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi><mo>[</mo><mi>p</mi><mo>]</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>[</mo><mi>p</mi><mo>]</mo></mrow></msub></math></span>, the Hamming graph <span><math><mi>H</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>p</mi><mo>)</mo></math></span> and its complement, the Hamming graph <span><math><mi>H</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>p</mi><mo>)</mo></math></span><span>, and two infinite families of normal Cayley graphs on the extraspecial group of order </span><span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and exponent <em>p</em>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"202 ","pages":"Article 105814"},"PeriodicalIF":1.1,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50187327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信