{"title":"具有循环法商的基本四价定向图","authors":"Nemanja Poznanović , Cheryl E. Praeger","doi":"10.1016/j.jcta.2024.105895","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>OG</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span> denote the family of all graph-group pairs <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> where Γ is finite, 4-valent, connected, and <em>G</em>-oriented (<em>G</em>-half-arc-transitive). A subfamily of <span><math><mi>OG</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span> has recently been identified as ‘basic’ in the sense that all graphs in this family are normal covers of at least one basic member. In this paper we provide a description of such basic pairs which have at least one <em>G</em>-normal quotient which is isomorphic to a cycle graph. In doing so, we produce many new infinite families of examples and solve several problems posed in the recent literature on this topic. This result completes a research project aiming to provide a description of all basic pairs in <span><math><mi>OG</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105895"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000347/pdfft?md5=f4ddc34a4bd5053c5b3e0115d6f19233&pid=1-s2.0-S0097316524000347-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Basic tetravalent oriented graphs with cyclic normal quotients\",\"authors\":\"Nemanja Poznanović , Cheryl E. Praeger\",\"doi\":\"10.1016/j.jcta.2024.105895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>OG</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span> denote the family of all graph-group pairs <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> where Γ is finite, 4-valent, connected, and <em>G</em>-oriented (<em>G</em>-half-arc-transitive). A subfamily of <span><math><mi>OG</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span> has recently been identified as ‘basic’ in the sense that all graphs in this family are normal covers of at least one basic member. In this paper we provide a description of such basic pairs which have at least one <em>G</em>-normal quotient which is isomorphic to a cycle graph. In doing so, we produce many new infinite families of examples and solve several problems posed in the recent literature on this topic. This result completes a research project aiming to provide a description of all basic pairs in <span><math><mi>OG</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"206 \",\"pages\":\"Article 105895\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000347/pdfft?md5=f4ddc34a4bd5053c5b3e0115d6f19233&pid=1-s2.0-S0097316524000347-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000347\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000347","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 OG(4) 表示所有图-群对(Γ,G)的族,其中Γ 是有限的、四价的、连通的和面向 G 的(G-半弧-传递性)。最近,OG(4)的一个子族被认定为 "基本 "族,因为该族中的所有图都是至少一个基本成员的法向盖。在本文中,我们描述了至少有一个 G 常商数与循环图同构的基本图对。在此过程中,我们产生了许多新的无穷族实例,并解决了最近有关这一主题的文献中提出的几个问题。这一成果完成了一个旨在描述 OG(4) 中所有基本对的研究项目。
Basic tetravalent oriented graphs with cyclic normal quotients
Let denote the family of all graph-group pairs where Γ is finite, 4-valent, connected, and G-oriented (G-half-arc-transitive). A subfamily of has recently been identified as ‘basic’ in the sense that all graphs in this family are normal covers of at least one basic member. In this paper we provide a description of such basic pairs which have at least one G-normal quotient which is isomorphic to a cycle graph. In doing so, we produce many new infinite families of examples and solve several problems posed in the recent literature on this topic. This result completes a research project aiming to provide a description of all basic pairs in .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.