Gianira N. Alfarano , Alessandro Neri , Ferdinando Zullo
{"title":"最大旗阶距离编码","authors":"Gianira N. Alfarano , Alessandro Neri , Ferdinando Zullo","doi":"10.1016/j.jcta.2024.105908","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we extend the study of linear spaces of upper triangular matrices endowed with the flag-rank metric. Such metric spaces are isometric to certain spaces of degenerate flags and have been suggested as suitable framework for network coding. In this setting we provide a Singleton-like bound which relates the parameters of a flag-rank-metric code. This allows us to introduce the family of maximum flag-rank distance codes, that are flag-rank-metric codes meeting the Singleton-like bound with equality. Finally, we provide several constructions of maximum flag-rank distance codes.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000475/pdfft?md5=2c125aba1bc7cdaa56a76a0c7c4abe5d&pid=1-s2.0-S0097316524000475-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Maximum flag-rank distance codes\",\"authors\":\"Gianira N. Alfarano , Alessandro Neri , Ferdinando Zullo\",\"doi\":\"10.1016/j.jcta.2024.105908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we extend the study of linear spaces of upper triangular matrices endowed with the flag-rank metric. Such metric spaces are isometric to certain spaces of degenerate flags and have been suggested as suitable framework for network coding. In this setting we provide a Singleton-like bound which relates the parameters of a flag-rank-metric code. This allows us to introduce the family of maximum flag-rank distance codes, that are flag-rank-metric codes meeting the Singleton-like bound with equality. Finally, we provide several constructions of maximum flag-rank distance codes.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000475/pdfft?md5=2c125aba1bc7cdaa56a76a0c7c4abe5d&pid=1-s2.0-S0097316524000475-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we extend the study of linear spaces of upper triangular matrices endowed with the flag-rank metric. Such metric spaces are isometric to certain spaces of degenerate flags and have been suggested as suitable framework for network coding. In this setting we provide a Singleton-like bound which relates the parameters of a flag-rank-metric code. This allows us to introduce the family of maximum flag-rank distance codes, that are flag-rank-metric codes meeting the Singleton-like bound with equality. Finally, we provide several constructions of maximum flag-rank distance codes.