{"title":"The number of primitive words of unbounded exponent in the language of an HD0L-system is finite","authors":"Karel Klouda, Štěpán Starosta","doi":"10.1016/j.jcta.2024.105904","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>H</em> be an HD0L-system. We show that there are only finitely many primitive words <em>v</em> with the property that <span><math><msup><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, for all integers <em>k</em>, is an element of the factorial language of <em>H</em>. In particular, this result applies to the set of all factors of a morphic word. We provide a formalized proof in the proof assistant Isabelle/HOL as part of the Combinatorics on Words Formalized project.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105904"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000438","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let H be an HD0L-system. We show that there are only finitely many primitive words v with the property that , for all integers k, is an element of the factorial language of H. In particular, this result applies to the set of all factors of a morphic word. We provide a formalized proof in the proof assistant Isabelle/HOL as part of the Combinatorics on Words Formalized project.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.