{"title":"The second-order football-pool problem and the optimal rate of generalized-covering codes","authors":"Dor Elimelech , Moshe Schwartz","doi":"10.1016/j.jcta.2023.105834","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105834","url":null,"abstract":"<div><p>The goal of the classic football-pool problem is to determine how many lottery tickets are to be bought in order to guarantee at least <span><math><mi>n</mi><mo>−</mo><mi>r</mi></math></span> correct guesses out of a sequence of <em>n</em> games played. We study a generalized (second-order) version of this problem, in which any of these <em>n</em><span> games consists of two sub-games. The second-order version of the football-pool problem is formulated using the notion of generalized-covering radius, recently proposed as a fundamental property of linear codes. We consider an extension of this property to general (not necessarily linear) codes, and provide an asymptotic solution to our problem by finding the optimal rate function of second-order covering codes given a fixed normalized covering radius. We also prove that the fraction of second-order covering codes among codes of sufficiently large rate tends to 1 as the code length tends to ∞.</span></p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105834"},"PeriodicalIF":1.1,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138448848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Singleton-type bounds for list-decoding and list-recovery, and related results1","authors":"Eitan Goldberg , Chong Shangguan , Itzhak Tamo","doi":"10.1016/j.jcta.2023.105835","DOIUrl":"10.1016/j.jcta.2023.105835","url":null,"abstract":"<div><p>List-decoding and list-recovery are important generalizations of unique decoding and receive considerable attention over the years. We study the optimal trade-off among the list-decoding (resp. list-recovery) radius, the list size, and the code rate, when the list size is constant and the alphabet size is large (both compared with the code length). We prove a new Singleton-type bound for list-decoding, which, for a wide range of parameters, is asymptotically tight up to a <span><math><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> factor. We also prove a Singleton-type bound for list-recovery, which is the first such bound in the literature. We apply these results to obtain near optimal lower bounds on the list size for list-decodable and list-recoverable codes with rates approaching capacity.</p><p>Moreover, we show that under some indivisibility condition of the parameters and over a sufficiently large alphabet, the largest list-decodable <em>nonlinear</em><span> codes can have much more codewords than the largest list-decodable linear codes. Such a large gap is not known to exist in unique decoding. We prove this by a novel connection between list-decoding and the notion of sparse hypergraphs in extremal combinatorics.</span></p><p>Lastly, we show that list-decodability or recoverability implies in some sense good unique decodability.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105835"},"PeriodicalIF":1.1,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138449940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MacMahon's partition analysis XIV: Partitions with n copies of n","authors":"George E. Andrews , Peter Paule","doi":"10.1016/j.jcta.2023.105836","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105836","url":null,"abstract":"<div><p>We apply the methods of partition analysis to partitions with <em>n</em> copies of <em>n</em>. This allows us to obtain multivariable generating functions related to classical Rogers-Ramanujan type identities. Also, partitions with <em>n</em> copies of <em>n</em> are extended to partition diamonds yielding numerous new results including a natural connection to overpartitions and a variety of partition congruences.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105836"},"PeriodicalIF":1.1,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138448849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Matroid Horn functions","authors":"Kristóf Bérczi , Endre Boros , Kazuhisa Makino","doi":"10.1016/j.jcta.2023.105838","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105838","url":null,"abstract":"<div><p>Hypergraph Horn functions were introduced as a subclass of Horn functions that can be represented by a collection of circular implication rules. These functions possess distinguished structural and computational properties. In particular, their characterizations in terms of implicate-duality and the closure operator provide extensions of matroid duality and the Mac Lane<!--> <!-->–<!--> <!-->Steinitz exchange property of matroid closure, respectively.</p><p>In the present paper, we introduce a subclass of hypergraph Horn functions that we call <em>matroid Horn</em> functions. We provide multiple characterizations of matroid Horn functions in terms of their canonical and complete CNF representations. We also study the Boolean minimization problem for this class, where the goal is to find a minimum size representation of a matroid Horn function given by a CNF representation. While there are various ways to measure the size of a CNF, we focus on the <em>number of circuits</em> and <em>circuit clauses</em>. We determine the size of an optimal representation for binary matroids, and give lower and upper bounds in the uniform case. For uniform matroids, we show a strong connection between our problem and Turán systems that might be of independent combinatorial interest.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105838"},"PeriodicalIF":1.1,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316523001061/pdfft?md5=55c70db92d34f783b8e0189c2f8d7950&pid=1-s2.0-S0097316523001061-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138404270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some refinements of Stanley's shuffle theorem","authors":"Kathy Q. Ji, Dax T.X. Zhang","doi":"10.1016/j.jcta.2023.105830","DOIUrl":"10.1016/j.jcta.2023.105830","url":null,"abstract":"<div><p>We give a combinatorial proof of Stanley's shuffle theorem by using the insertion lemma of Haglund, Loehr and Remmel. Based on this combinatorial construction, we establish several refinements of Stanley's shuffle theorem.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105830"},"PeriodicalIF":1.1,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138289376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Clebsch–Gordan coefficients of U(sl2) and the Terwilliger algebras of Johnson graphs","authors":"Hau-Wen Huang","doi":"10.1016/j.jcta.2023.105833","DOIUrl":"10.1016/j.jcta.2023.105833","url":null,"abstract":"<div><p><span>The universal enveloping algebra </span><span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> is a unital associative algebra over </span><span><math><mi>C</mi></math></span> generated by <span><math><mi>E</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>H</mi></math></span> subject to the relations<span><span><span><math><mrow><mo>[</mo><mi>H</mi><mo>,</mo><mi>E</mi><mo>]</mo><mo>=</mo><mn>2</mn><mi>E</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>H</mi><mo>,</mo><mi>F</mi><mo>]</mo><mo>=</mo><mo>−</mo><mn>2</mn><mi>F</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>]</mo><mo>=</mo><mi>H</mi><mo>.</mo></mrow></math></span></span></span> The element<span><span><span><math><mi>Λ</mi><mo>=</mo><mi>E</mi><mi>F</mi><mo>+</mo><mi>F</mi><mi>E</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></math></span></span></span> is called the Casimir element of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Let <span><math><mi>Δ</mi><mo>:</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>→</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> denote the comultiplication of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The universal Hahn algebra <span><math><mi>H</mi></math></span> is a unital associative algebra over <span><math><mi>C</mi></math></span> generated by <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi></math></span> and the relations assert that <span><math><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo><mo>=</mo><mi>C</mi></math></span> and each of<span><span><span><math><mrow><mo>[</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo>]</mo><mo>+</mo><mn>2</mn><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>B</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>]</mo><mo>+</mo><mn>4</mn><mi>B</mi><mi>A</mi><mo>+</mo><mn>2</mn><mi>C</mi></mrow></math></span></span></span> is central in <span><math><mi>H</mi></math></span>. Inspired by the Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><span>, we discover an algebra homomorphism </span><span><math><mo>♮</mo><mo>:</mo><mi>H</mi><mo>→</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> that maps<span><span><","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105833"},"PeriodicalIF":1.1,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138289377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A modular approach to Andrews-Beck partition statistics","authors":"Renrong Mao","doi":"10.1016/j.jcta.2023.105832","DOIUrl":"10.1016/j.jcta.2023.105832","url":null,"abstract":"<div><p>Andrews recently provided a <em>q</em>-series proof of congruences for <span><math><mi>N</mi><mi>T</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, the total number of parts in the partitions of <em>n</em> with rank congruent to <em>m</em><span> modulo </span><em>k</em>. Motivated by Andrews' works, Chern obtain congruences for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> which denotes the total number of ones in the partition of <em>n</em> with crank congruent to <em>m</em> modulo <em>k</em><span>. In this paper, we focus on the modular approach to these new partition statistics. Applying the theory of mock modular forms, we establish equalities and identities for </span><span><math><mi>N</mi><mi>T</mi><mo>(</mo><mi>m</mi><mo>,</mo><mn>7</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>,</mo><mn>7</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105832"},"PeriodicalIF":1.1,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"110423253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolas Crampé , Luc Vinet , Meri Zaimi , Xiaohong Zhang
{"title":"A bivariate Q-polynomial structure for the non-binary Johnson scheme","authors":"Nicolas Crampé , Luc Vinet , Meri Zaimi , Xiaohong Zhang","doi":"10.1016/j.jcta.2023.105829","DOIUrl":"10.1016/j.jcta.2023.105829","url":null,"abstract":"<div><p>The notion of multivariate <em>P</em>- and <em>Q</em><span>-polynomial association scheme has been introduced recently, generalizing the well-known univariate case<span>. Numerous examples of such association schemes have already been exhibited. In particular, it has been demonstrated that the non-binary Johnson scheme is a bivariate </span></span><em>P</em>-polynomial association scheme. We show here that it is also a bivariate <em>Q</em>-polynomial association scheme for some parameters. This provides, with the <em>P</em>-polynomial structure, the bispectral property (<em>i.e.</em><span> the recurrence and difference relations) of a family of bivariate orthogonal polynomials made out of univariate Krawtchouk and dual Hahn polynomials. The algebra based on the bispectral operators is also studied together with the subconstituent algebra of this association scheme.</span></p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"202 ","pages":"Article 105829"},"PeriodicalIF":1.1,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71509763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-expansive matrix number systems with bases similar to certain Jordan blocks","authors":"Joshua W. Caldwell , Kevin G. Hare , Tomáš Vávra","doi":"10.1016/j.jcta.2023.105828","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105828","url":null,"abstract":"<div><p>We study representations of integral vectors in a number system with a matrix base <em>M</em> and vector digits. We focus on the case when <em>M</em> is equal or similar to <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the Jordan block with eigenvalue 1 and dimension <em>n</em>. If <span><math><mi>M</mi><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we classify all digit sets of size two allowing representation for all of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. For <span><math><mi>M</mi><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, we show that a digit set of size three suffice to represent all of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. For bases <em>M</em> similar to <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, we construct a digit set of size <em>n</em> such that all of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is represented. The language of words representing the zero vector with <span><math><mi>M</mi><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and the digits <span><math><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>±</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>T</mi></mrow></msup></math></span> is shown not to be context-free, but to be recognizable by a Turing machine with logarithmic memory.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"202 ","pages":"Article 105828"},"PeriodicalIF":1.1,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50187332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On some double Nahm sums of Zagier","authors":"Zhineng Cao , Hjalmar Rosengren , Liuquan Wang","doi":"10.1016/j.jcta.2023.105819","DOIUrl":"https://doi.org/10.1016/j.jcta.2023.105819","url":null,"abstract":"<div><p>Zagier provided eleven conjectural rank two examples for Nahm's problem. All of them have been proved in the literature except for the fifth example, and there is no <em>q</em>-series proof for the tenth example. We prove that the fifth and the tenth examples are in fact equivalent. Then we give a <em>q</em>-series proof for the fifth example, which confirms a recent conjecture of Wang. This also serves as the first <em>q</em><span>-series proof for the tenth example, whose explicit form was conjectured by Vlasenko and Zwegers in 2011 and whose modularity was proved by Cherednik and Feigin in 2013 via nilpotent double affine Hecke algebras.</span></p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"202 ","pages":"Article 105819"},"PeriodicalIF":1.1,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50187330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}