Q+(5,q)的一个无穷双峰族,q偶数

IF 0.9 2区 数学 Q2 MATHEMATICS
Bart De Bruyn
{"title":"Q+(5,q)的一个无穷双峰族,q偶数","authors":"Bart De Bruyn","doi":"10.1016/j.jcta.2024.105938","DOIUrl":null,"url":null,"abstract":"<div><p>We construct an infinite family of hyperovals on the Klein quadric <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, <em>q</em> even. The construction makes use of ovoids of the symplectic generalized quadrangle <span><math><mi>W</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> that is associated with an elliptic quadric which arises as solid intersection with <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. We also solve the isomorphism problem: we determine necessary and sufficient conditions for two hyperovals arising from the construction to be isomorphic.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105938"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An infinite family of hyperovals of Q+(5,q), q even\",\"authors\":\"Bart De Bruyn\",\"doi\":\"10.1016/j.jcta.2024.105938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct an infinite family of hyperovals on the Klein quadric <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, <em>q</em> even. The construction makes use of ovoids of the symplectic generalized quadrangle <span><math><mi>W</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> that is associated with an elliptic quadric which arises as solid intersection with <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. We also solve the isomorphism problem: we determine necessary and sufficient conditions for two hyperovals arising from the construction to be isomorphic.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"208 \",\"pages\":\"Article 105938\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000773\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000773","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在克莱因四边形 Q+(5,q)(q 为偶数)上构建了一个无穷的超视距族。该构造利用了交映广义四边形 W(q) 的卵形,而交映广义四边形 W(q) 与一个椭圆四边形相关,该椭圆四边形与 Q+(5,q)实交。我们还解决了同构问题:我们确定了由该构造产生的两个超视距同构的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An infinite family of hyperovals of Q+(5,q), q even

We construct an infinite family of hyperovals on the Klein quadric Q+(5,q), q even. The construction makes use of ovoids of the symplectic generalized quadrangle W(q) that is associated with an elliptic quadric which arises as solid intersection with Q+(5,q). We also solve the isomorphism problem: we determine necessary and sufficient conditions for two hyperovals arising from the construction to be isomorphic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信